Difference between your score and the mean

Suppose you score a 73 on an assignment where the mean is 80.
How do you think of your score?
Do you think I am 7 points below the mean?
What is the expected value of the new derived random variable that is your score minus the mean?

Theorem 3.11

For any random variable X,

$$E [X - \mu_X] = 0.$$

Proof: Theorem 3.11

Defining $g(X) = X - \mu_X$ and applying Theorem 3.10 yields

$$E [g(X)] = \sum_{x \in S_X} (x - \mu_X)P_X(x) = \sum_{x \in S_X} xP_X(x) - \mu_X \sum_{x \in S_X} P_X(x).$$

The first term on the right side is μ_X by definition. In the second term, $\sum_{x \in S_X} P_X(x) = 1$, so both terms on the right side are μ_X and the difference is zero.
Theorem 3.12

For any random variable X,

$$E[aX + b] = aE[X] + b.$$

Example 3.30 Problem

Recall from Examples 3.5 and 3.24 that X has PMF

$$P_X(x) = \begin{cases}
1/4 & x = 0, \\
1/2 & x = 1, \\
1/4 & x = 2, \\
0 & \text{otherwise.}
\end{cases}$$

What is the expected value of $V = g(X) = 4X + 7$?

Example 3.30 Solution

From Theorem 3.12,

$$E[V] = E[g(X)] = E[4X + 7] = 4E[X] + 7 = 4(1) + 7 = 11.$$

(1)

We can verify this result by applying Theorem 3.10:

$$E[V] = g(0)P_X(0) + g(1)P_X(1) + g(2)P_X(2)$$

$$= 7(1/4) + 11(1/2) + 15(1/4) = 11.$$

(2)

Example 3.31 Problem

Continuing Example 3.30, let $W = h(X) = X^2$. What is $E[W]$?

Example 3.31 Solution

Theorem 3.10 gives

\[E[W] = \sum h(x)P_X(x) = (1/4)0^2 + (1/2)1^2 + (1/4)2^2 = 1.5. \]

(1)

Note that this is not the same as \(h(E[W]) = (1)^2 = 1 \).

Quiz 3.7

The number of memory chips \(M \) needed in a personal computer depends on how many application programs, \(A \), the owner wants to run simultaneously. The number of chips \(M \) and the number of application programs \(A \) are described by

\[
M = \begin{cases}
4 & \text{chips for 1 program,} \\
4 & \text{chips for 2 programs,} \\
6 & \text{chips for 3 programs,} \\
8 & \text{chips for 4 programs,} \\
\end{cases}
\]

\[
P_A(a) = \begin{cases}
0.1(5-a) & a = 1, 2, 3, 4, \\
0 & \text{otherwise.} \\
\end{cases}
\]

(1)

(a) What is the expected number of programs \(\mu_A = E[A] \)?

(b) Express \(M \), the number of memory chips, as a function \(M = g(A) \) of the number of application programs \(A \).

(c) Find \(E[M] = E[g(A)] \). Does \(E[M] = g(E[A]) \)?

Quiz 3.7 Solution

(a) Using Definition 3.13, the expected number of applications is

\[E[A] = \sum_{a=1}^{4} aP_A(a) \]

\[= 1(0.4) + 2(0.3) + 3(0.2) + 4(0.1) \]

\[= 2. \]

(1)

(b) The number of memory chips is

\[M = g(A) = \begin{cases}
4 & A = 1, 2, \\
6 & A = 3, \\
8 & A = 4. \\
\end{cases} \]

(2)

(c) By Theorem 3.10, the expected number of memory chips is

\[E[M] = \sum_{a=1}^{4} g(A)P_A(a) \]

\[= 4(0.4) + 4(0.3) + 6(0.2) + 8(0.1) \]

\[= 4.8. \]

Since \(E[A] = 2 \),

\[g(E[A]) = g(2) = 4. \]

However, \(E[M] = 4.8 \neq g(E[A]) \). The two quantities are different because \(g(A) \) is not of the form \(\alpha A + \beta \).

Section 3.8

Variance and Standard Deviation
Definition 3.15 Variance

The variance of random variable X is

$$\text{Var}[X] = E\left[(X - \mu_X)^2\right].$$

Definition 3.16 Standard Deviation

The standard deviation of random variable X is

$$\sigma_X = \sqrt{\text{Var}[X]}.$$
Theorem 3.14

\[
\text{Var}[X] = E[X^2] - \mu_X^2 = E[X^2] - (E[X])^2.
\]

Proof: Theorem 3.14

Expanding the square in (3.75), we have

\[
\begin{align*}
\text{Var}[X] &= \sum_{x \in S_X} x^2 P_X(x) - \sum_{x \in S_X} 2\mu_X x P_X(x) + \sum_{x \in S_X} \mu_X^2 P_X(x) \\
&= E[X^2] - 2\mu_X \sum_{x \in S_X} x P_X(x) + \mu_X^2 \sum_{x \in S_X} P_X(x) \\
&= E[X^2] - 2\mu_X^2 + \mu_X^2.
\end{align*}
\]

Definition 3.17 Moments

For random variable \(X \):

(a) The \(n \)th moment is \(E[X^n] \).

(b) The \(n \)th central moment is \(E[(X - \mu_X)^n] \).
Example 3.32 Problem

Continuing Examples 3.5, 3.24, and 3.30, we recall that \(X \) has PMF

\[
P_X(x) = \begin{cases}
1/4 & x = 0, \\
1/2 & x = 1, \\
1/4 & x = 2, \\
0 & \text{otherwise},
\end{cases}
\]

and expected value \(E[X] = 1 \). What is the variance of \(X \)?

Example 3.32 Solution

In order of increasing simplicity, we present three ways to compute \(\text{Var}[X] \).

- From Definition 3.15, define

\[
W = (X - \mu_X)^2 = (X - 1)^2.
\]

We observe that \(W \equiv 0 \) if and only if \(X = 1 \); otherwise, if \(X = 0 \) or \(X = 2 \), then \(W = 1 \). Thus \(P[W = 0] = P_X(1) = 1/2 \) and \(P[W = 1] = P_X(0) + P_X(2) = 1/2 \). The PMF of \(W \) is

\[
P_W(w) = \begin{cases}
1/2 & w = 0,1, \\
0 & \text{otherwise}.
\end{cases}
\]

Then

\[
\text{Var}[X] = E[W] = (1/2)(0) + (1/2)(1) = 1/2.
\]

- Recall that Theorem 3.10 produces the same result without requiring the derivation of \(P_W(w) \).

\[
\text{Var}[X] = E[(X - \mu_X)^2] = (0 - 1)^2P_X(0) + (1 - 1)^2P_X(1) + (2 - 1)^2P_X(2) = 1/2.
\]

- To apply Theorem 3.14, we find that

\[
E[X^2] = 0^2P_X(0) + 1^2P_X(1) + 2^2P_X(2) = 1.5.
\]

Thus Theorem 3.14 yields

\[
\text{Var}[X] = E[X^2] - \mu_X^2 = 1.5 - 1^2 = 1/2.
\]

Proof: Theorem 3.15

We let \(Y = aX + b \) and apply Theorem 3.14. We first expand the second moment to obtain

\[
E[Y^2] = E[a^2X^2 + 2abX + b^2] = a^2E[X^2] + 2ab\mu_X + b^2.
\]

Expanding the right side of Theorem 3.12 yields

\[
\mu_Y^2 = a^2\mu_X^2 + 2ab\mu_X + b^2.
\]

Because \(\text{Var}[Y] = E[Y^2] - \mu_Y^2 \), Equations (3.85) and (3.86) imply that

\[
\text{Var}[Y] = a^2E[X^2] - a^2\mu_X^2 = a^2(E[X^2] - \mu_X^2) = a^2 \text{Var}[X].
\]
Example 3.33 Problem

A printer automatically prints an initial cover page that precedes the regular printing of an X page document. Using this printer, the number of printed pages is $Y = X + 1$. Express the expected value and variance of Y as functions of $E[X]$ and $\text{Var}[X]$.

Example 3.33 Solution

The expected number of transmitted pages is $E[Y] = E[X] + 1$. The variance of the number of pages sent is $\text{Var}[Y] = \text{Var}[X]$.

Example 3.34 Problem

In Example 3.28, the amplitude V in volts has PMF

$$P_V(v) = \begin{cases} 1/7 & v = -3, -2, \ldots, 3, \\ 0 & \text{otherwise}. \end{cases}$$

A new voltmeter records the amplitude U in millivolts. Find the variance and standard deviation of U.

Example 3.34 Solution

Note that $U = 1000V$. To use Theorem 3.15, we first find the variance of V. The expected value of the amplitude is

$$\mu_V = 1/7[-3 + (-2) + (-1) + 0 + 1 + 2 + 3] = 0 \text{ volts}. \quad (1)$$

The second moment is

$$E[V^2] = 1/7[(-3)^2 + (-2)^2 + (-1)^2 + 0^2 + 1^2 + 2^2 + 3^2] = 4 \text{ volts}^2. \quad (2)$$

Therefore the variance is $\text{Var}[V] = E[V^2] - \mu_V^2 = 4 \text{ volts}^2$. By Theorem 3.15,

$$\text{Var}[U] = 1000^2 \text{Var}[V] = 4,000,000 \text{ millivolts}^2,$$

and thus $\sigma_U = 2000$ millivolts.
Theorem 3.16

(a) If \(X \) is Bernoulli \((p)\), then
\[
\text{Var}[X] = p(1-p).
\]

(b) If \(X \) is geometric \((p)\), then
\[
\text{Var}[X] = (1-p)/p^2.
\]

(c) If \(X \) is binomial \((n,p)\), then
\[
\text{Var}[X] = np(1-p).
\]

(d) If \(X \) is Pascal \((k,p)\), then
\[
\text{Var}[X] = k(1-p)/p^2.
\]

(e) If \(X \) is Poisson \((\alpha)\), then
\[
\text{Var}[X] = \alpha.
\]

(f) If \(X \) is discrete uniform \((k,l)\), then
\[
\text{Var}[X] = (l-k)(l-k+2)/12.
\]

Quiz 3.8

In an experiment with three customers entering the Phonesmart store, the observation is \(N \), the number of phones purchased. The PMF of \(N \) is

\[
P_N(n) = \begin{cases}
\frac{(4-n)}{10} & n = 0, 1, 2, 3 \\
0 & \text{otherwise.}
\end{cases}
\]

Find

(a) The expected value \(\text{E}[N] \)

(b) The second moment \(\text{E}[N^2] \)

(c) The variance \(\text{Var}[N] \)

(d) The standard deviation \(\sigma_N \)

Quiz 3.8 Solution

For this problem, it is helpful to wrote out the PMF of \(N \) in the table

\[
\begin{array}{c|cccc}
 n & 0 & 1 & 2 & 3 \\
\hline
 P_N(n) & 0.4 & 0.3 & 0.2 & 0.1 \\
\end{array}
\]

The PMF \(P_N(n) \) allows us to calculate each of the desired quantities.

(a) The expected value is
\[
\text{E}[N] = \sum_{n=0}^{3} nP_N(n) = 0(0.4) + 1(0.3) + 2(0.2) + 3(0.1) = 1. \quad (1)
\]

(b) The second moment of \(N \) is
\[
\text{E}[N^2] = \sum_{n=0}^{3} n^2P_N(n) = 0^2(0.4) + 1^2(0.3) + 2^2(0.2) + 3^2(0.1) = 2. \quad (2)
\]

(c) The variance of \(N \) is
\[
\text{Var}[N] = \text{E}[N^2] - (\text{E}[N])^2 = 2 - 1^2 = 1. \quad (3)
\]

(d) The standard deviation is \(\sigma_N = \sqrt{\text{Var}[N]} = 1. \)