Motivation

Suppose we perform a series of actions, each one governed by a probabilistic outcome. The choice of what we do for successive actions might even depend on the previous outcome.

How can we model this process?

One possibility is with a tree diagram.

Example 2.1 Problem

For the resistors of Example 1.19, we used \(A \) to denote the event that a randomly chosen resistor is “within 50 \(\Omega \) of the nominal value.” This could mean “acceptable.” We use the notation \(N \) (“not acceptable”) for the complement of \(A \). The experiment of testing a resistor can be viewed as a two-step procedure. First we identify which machine \((B_1, B_2, \text{ or } B_3) \) produced the resistor. Second, we find out if the resistor is acceptable. Draw a tree for this sequential experiment. What is the probability of choosing a resistor from machine \(B_2 \) that is not acceptable?
Example 2.1 Solution

This two-step procedure is shown in the tree on the left. To use the tree to find the probability of the event B_2N, a nonacceptable resistor from machine B_2, we start at the left and find that the probability of reaching B_2 is $P[B_2] = 0.4$. We then move to the right to B_2N and multiply $P[B_2]$ by $P[N|B_2] = 0.1$ to obtain $P[B_2N] = (0.4)(0.1) = 0.04$.

Example 2.2 Problem

Traffic engineers have coordinated the timing of two traffic lights to encourage a run of green lights. In particular, the timing was designed so that with probability 0.8 a driver will find the second light to have the same color as the first. Assuming the first light is equally likely to be red or green, what is the probability $P[G_2]$ that the second light is green? Also, what is $P[W]$, the probability that you wait for at least one of the first two lights? Lastly, what is $P[G_1|R_2]$, the conditional probability of a green first light given a red second light?

Example 2.2 Solution

The tree for the two-light experiment is shown on the left. The probability that the second light is green is

$P[G_2] = P[G_1|G_2] + P[R_1|G_2] = 0.4 + 0.1 = 0.5$. \hspace{1cm} (1)

The event W that you wait for at least one light is the event that at least one light is red.

$W = \{R_1G_2 \cup G_1R_2 \cup R_1R_2\}$. \hspace{1cm} (2)

The probability that you wait for at least one light is

$P[W] = P[R_1G_2] + P[G_1R_2] + P[R_1R_2] = 0.1 + 0.1 + 0.4 = 0.6$. \hspace{1cm} (3)

(Continued 2)

An alternative way to the same answer is to observe that W is also the complement of the event that both lights are green. Thus,

$P[W] = P[(G_1G_2)^c] = 1 - P[G_1G_2] = 0.6$. \hspace{1cm} (4)

To find $P[G_1|R_2]$, we need $P[R_2] = 1 - P[G_2] = 0.5$. Since $P[G_1R_2] = 0.1$, the conditional probability that you have a green first light given a red second light is

$P[G_1|R_2] = \frac{P[G_1R_2]}{P[R_2]} = \frac{0.1}{0.5} = 0.2$. \hspace{1cm} (5)

[Continued]
Example 2.3 Problem

Suppose you have two coins, one biased, one fair, but you don’t know which coin is which. Coin 1 is biased. It comes up heads with probability $3/4$, while coin 2 comes up heads with probability $1/2$. Suppose you pick a coin at random and flip it. Let C_i denote the event that coin i is picked. Let H and T denote the possible outcomes of the flip. Given that the outcome of the flip is a head, what is $P[C_1|H]$, the probability that you picked the biased coin? Given that the outcome is a tail, what is the probability $P[C_1|T]$ that you picked the biased coin?

Example 2.3 Solution

First, we construct the sample tree on the left. To find the conditional probabilities, we see

$$P[C_1|H] = \frac{P[C_1|H]}{P[H]} = \frac{P[C_1H]}{P[C_1H] + P[C_2H]}$$

From the leaf probabilities in the sample tree,

$$P[C_1|H] = \frac{3/8}{3/8 + 1/4} = \frac{3}{5}$$

Similarly,

$$P[C_1|T] = \frac{P[C_1T]}{P[T]} = \frac{P[C_1T]}{P[C_1T] + P[C_2T]} = \frac{1/8}{1/8 + 1/4} = \frac{1}{3}$$

As we would expect, we are more likely to have chosen coin 1 when the first flip is heads, but we are more likely to have chosen coin 2 when the first flip is tails.