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ABSTRACT
The application of information retrieval techniques to search
tasks in software engineering is made difficult by the lexi-
cal gap between search queries, usually expressed in natural
language (e.g. English), and retrieved documents, usually
expressed in code (e.g. programming languages). This is
often the case in bug and feature location, community ques-
tion answering, or more generally the communication be-
tween technical personnel and non-technical stake holders in
a software project. In this paper, we propose bridging the
lexical gap by projecting natural language statements and
code snippets as meaning vectors in a shared representation
space. In the proposed architecture, word embeddings are
first trained on API documents, tutorials, and reference doc-
uments, and then aggregated in order to estimate semantic
similarities between documents. Empirical evaluations show
that the learned vector space embeddings lead to improve-
ments in a previously explored bug localization task and a
newly defined task of linking API documents to computer
programming questions.

CCS Concepts
•Information systems → Multilingual and crosslin-
gual retrieval; Similarity measures; Learning to rank;
•Software and its engineering → Software testing
and debugging; •Computing methodologies → Lexi-
cal semantics;

Keywords
Word embeddings, skip-gram model, bug localization, bug
reports, API documents

1. INTRODUCTION AND MOTIVATION
Recently, text retrieval approaches have been applied to

support more than 20 Software Engineering (SE) tasks [11,
24]. In these approaches, the lexical gap between user queries
and code [27] is usually identified as significant impediment.
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In feature location and bug localization [25], for example, the
information need may be expressed as an issue report writ-
ten in natural language, whereas the functions and files to
be retrieved mainly contain code. In automatic code search
[27], there is a mismatch between the high-level intent in
user queries and the low-level implementation details. In
community Question Answering (cQA), questions and an-
swers are expressed in natural language, code, or a combi-
nation of both [6, 34, 40]. Consequently, standard informa-
tion retrieval (IR) methods based on Vector Space Models
(VSM) are plagued by the lexical gap between the natural
language used in the user query and the programming lan-
guage used in the source code [32]. Even when the query
and the source files use a mix of statements in natural lan-
guage and programming language (code snippets in queries
and natural language comments in code), the performance of
the IR system is sub-optimal due to the significant language
mismatch.

An example of language mismatch in the bug localization
task is illustrated in Figures 1 and 2. Figure 1 shows a bug
report1 from the Eclipse project, in which the author re-
ports an abnormal behavior of the view icon when the view
is minimized. Correspondingly, the bug report contains rele-
vant keywords such as view, icon, and minimize. The bug is
later fixed by changing the source file PartServiceImpl.java2,
which contains the code managing view behaviors. However,
the code does not contain any of the keywords found in the
bug report. Instead, the code contains keywords such as
stack and placeholder. Overall, because the code and the
bug report have no words in common, their cosine similarity
in the standard tf.idf vector space models used in IR would
be 0. Nevertheless, it can be determined automatically that
the two sets of keywords are semantically related through
the use of the distributional hypothesis [12]. According to
this linguistic hypothesis, words that appear in the same
contexts tend to have similar semantic meanings. Figures 3,
4, and 5 show 3 types of documents where keywords from
both the bug report and the source code appear in the same
context. Figure 3 shows a fragment from the Eclipse user
guide3 that talks about minimizing views. In this fragment,
the two types of keywords appear together in the same sen-
tences. This is further illustrated in Figure 4, which shows a
fragment from the plug-in developer guide4, and in Figure 5
that contains a fragment from an API document. In fact,

1https://bugs.eclipse.org/bugs/show bug.cgi?id=384108
2https://git.eclipse.org/r/#/c/20615/
3http://help.eclipse.org/luna/nav/0
4http://help.eclipse.org/luna/nav/46



Bug ID: 384108
Summary: JUnit view icon no longer shows progress while
executing tests
Description: Before I upgraded to Juno this morning I
used to happily run tests with the JUnit view minimized,
and enjoy seeing the progress of the tests on it. Now I don’t
see any change on the icon until if passes (where a green
check appears) or fails (where a red X appears) ...

Figure 1: Eclipse bug report 384108, with keywords
in red.

public class PartServiceImpl implements EPartService {
...

private void recordStackActivation(MPart part) {...
MPlaceholder placeholder = part.getCurSharedRef();

... }

...
private void adjustPlaceholder(MPart part) {...

MPlaceholder placeholder = part.getCurSharedRef();
... }

... }

Figure 2: Code from PartServiceImpl.java, with
keywords in blue.

throughout the user guide, developer guide, and API docu-
ments, the words view and placeholder frequently appear in
the same context.

The distributional hypothesis [12] has provided the basis
for a number of methods that use word co-occurrences in or-
der to create vector representations of words (i.e. word em-
beddings), such that words with similar meaning have simi-
lar vectors. Inspired by the success of unsupervised learning
of word representations in natural language processing, we
propose a general method in which natural language state-
ments and code snippets are projected as meaning vectors
in a low-dimensional shared representation space. When
applied on contexts such as the ones shown in Figures 3
to 5, the method is expected to automatically determine
that the keywords view and placeholder are related semanti-
cally, and therefore the corresponding bug report and source
code should have a non-zero semantic similarity.

While word embeddings have been shown to help in vari-
ous NLP tasks [3, 8], to the best of our knowledge they have
not been used to support text retrieval in software engineer-
ing. A number of recent approaches explore the mining of
semantically related software terms. Tian et al. [41, 42]
introduce SEWordSim, a software-specific word similarity
database trained on Stack Overflow questions and answers.
Howard et al. [13] and Yang et al. [45] infer semantically
related words from code. Wang et al. [44] mine word simi-
larities from tags in FreeCode. However, these previous pro-
posals for word similarities do not extend them to computing
similarities between documents. In this paper, we incorpo-
rate word embeddings into a modified version of the text-to-
text text similarity introduced by Mihalcea et al. [28], such
that word embeddings can be used to calculate the semantic
similarity between SE queries and their candidate answers.

The main contributions of this paper include: an adapta-

Section: Working with views and editors
Topic: Maximizing and minimizing in the eclipse presenta-
tion
Content: The minimize behavior for the Editor Area is
somewhat different; minimizing the Editor Area results in a
trim stack containing only a placeholder icon representing
the entire editor area rather than icons for each open editor
...

Figure 3: Text from Eclipse Workbench User Guide.

Section: Making UI contributions
Topic: Adding the perspective
Content: The browser perspective defines two views (one
visible, with a placeholder for the other) ...

Figure 4: Text from Eclipse Platform Plug-in De-
veloper Guide.

Interface IPageLayout

Description: A page layout defines the initial layout for a
perspective within a page in a workbench window... View
placeholders may also have a secondary id. ... For example,
the placeholder ”someView:*” will match any occurrence of
the view that has primary id ”someView” and that also has
some non-null secondary id. Note that this placeholder will
not match the view if it has no secondary id ...

Figure 5: API description for IPageLayout.

tion of the Skip-gram model [30] to the task of learning word
embeddings for text and code in a low-dimensional shared
vector space; a method for estimating the semantic similar-
ity between queries and documents that utilizes word em-
beddings; an evaluation of the proposed semantic similarity
features that shows their utility in two IR tasks in SE: a pre-
viously explored bug localization task and a newly defined
task of linking API documents to Java questions posted on
Stack Overflow.

The rest of this paper is organized as follows. Section 2 in-
troduces the word embeddings idea, with a subsection detail-
ing the Skip-gram model for learning word embeddings. Sec-
tion 3 introduces techniques to adapt the Skip-gram model
for training word embeddings on software documents that
contains both free-text and code. Section 4 introduces two
similarity features that are aimed at capturing the seman-
tic similarity between documents using word embeddings.
Section 5 describes the general ranking model used to im-
plement the two IR systems evaluated in this paper. Section
6 presents a comprehensive evaluation of the impact that the
newly proposed features have on the ranking performance.
Section 8 discusses related work, followed by conclusions in
Section 10.

2. WORD EMBEDDINGS
Harris’ [12] distributional hypothesis, which states that

words in the same context tends to have similar meanings,
has given rise to many distributional semantic models (DSMs)
in which individual words are no longer treated as unique
symbols, but represented as d-dimensional vectors of real
numbers that capture their contextual semantic meanings,



such that similar words have similar vector representations.
Traditional DSMs create word vectors from a word-context

matrix M , where each row corresponds to a word wi, each
column to a context cj that contains wi, and each cell Mij to
the co-occurrence counts (e.g. the occurrences of wi in cj).
For example, Pantel and Lin [33] compute Mij as the point-
wise mutual information (PMI) between wi and cj . Lan-
dauer and Dumais [19] introduced Latent Semantic Analysis
(LSA), which applies truncated Singular Value Decomposi-
tion (SVD) to reduce M to a low-dimensional latent space.
These models are referred to as count-based models.

Recently, a set of neural-network-based approaches [4,
7, 30] were proposed to represent each word with a low-
dimensional vector called “neural embedding” or ”word em-
bedding” [21]. Unlike the traditional DSMs that initialize
vectors with co-occurrence counts, these neural language
models directly learn the vectors to optimally predict the
context, and are called predictive models. Such models
were successfully applied in a variety of NLP tasks [3, 8,
31]. Among these models, Mikolov’s Skip-gram model [30]
is popular for its simplicity and efficiency during training.
The Skip-gram model was also shown to significantly out-
performs LSA and other traditional count-based approaches
in a set of tasks in IR and NLP [3, 31].

2.1 Learning Word Embeddings
Learning word embeddings refers to finding vector repre-

sentations of words such that words that are similar in mean-
ing are associated with similar vector embeddings, where the
similarity between vectors is usually defined as cosine simi-
larity. To learn embeddings for natural language words and
code tokens, we use the unsupervised Skip-gram model of
Mikolov et al. [30]. The Skip-gram model learns vector
representations of words that are useful for predicting the
surrounding words in a sentence. Figure 6 illustrates the
training procedure employed by the Skip-gram model when
it reaches the current word wt = numbers.

Figure 6: Positive and negative training examples
in the Skip-gram model.

The vector representation wt is used as the parameter
vector of a binary logistic regression model (Equation 1)
that takes an arbitrary word wk as input and is trained to
predict a probability of 1 if the wk appears in the context of
wt and 0 otherwise.

P (wk∈Ct|wt) = σ(wT
t wk) = (1 + exp(−wT

t wk))−1 (1)

Thus, given an arbitrary word wk, its vector representa-
tion wk is used as a feature vector in the logistic regression

model parameterized by wt. If the word wk is in the context
of wt, it is considered to be a positive example (w+). Any
other word can serve as a negative example (w−). The con-
text Ct is usually defined as a fixed size window centered at
the current word wt. The set of (noisy) negative examples
Nt is constructed by randomly sampling from the domain
vocabulary a fixed number of words, for each word in the
context Ct. When trained on a sequence of T words, the
Skip-gram model uses stochastic gradient descent to mini-
mize the negative of the log-likelihood objective J(w) shown
in Equation 2.

J(w)=

T∑
t=1

∑
w+∈Ct

(log σ(wT
t w+) +

∑
w−∈Nt

log σ(−wT
t w−)) (2)

When applying the Skip-gram model for learning embed-
dings of natural language words and source code tokens, we
considered the following two scenarios:

1. One-vocabulary setting: A single vocabulary is cre-
ated to contain both words and tokens. This means
that the natural language word clear referring to an
adjective and the source code token clear referring to
a method name would be represented with the same
vocabulary entry.

2. Two-vocabulary setting: Two vocabularies are cre-
ated. One is used for words appearing in the natural
language text and the other is used for tokens appear-
ing in the code. This means that the natural language
word clear referring to an adjective and the source code
token clear referring to a method name will belong to
different vocabularies.

One difference between the one-vocabulary setting and the
two-vocabulary setting is that the former uses the context
of the method name clear to train the word embedding for
the adjective clear, while the second one does not.

3. LEARNING WORD EMBEDDINGS ON
SOFTWARE DOCUMENTS

Tutorials, API documents, and bug reports often contain
sentences that mix natural language with code. Figure 7
shows sentences extracted from an Eclipse tutorial5 on using
OpenGL with SWT. The first sentence creates a context for

A context must be created with a Drawable, usually an SWT
Canvas, on which OpenGL renders its scenes.

The application uses GLScene, which is a utility class for
displaying OpenGL scenes.
The GLScene class is similar to SWT’s Canvas.

GLScene uses the entire area of the canvas for drawing.
In the constructor, a new SWT Canvas is created. This is
the canvas that is associated with a GLContext instance.

Figure 7: Tutorial sentences mixing natural lan-
guage with code.

5http://www.eclipse.org/articles/Article-SWT-OpenGL/
opengl.html



the natural language word “render”, whereas the next 2 sen-
tences create a context for the code token GLScene. The two
contexts have a significant number of words/tokens in com-
mon: C(render) ∩ C(GLScene) = {SWT, Canvas, OpenGL,
scene}. When run over a large number of sentences that con-
tain similar contexts for the two words“render”and GLScene,
the Skip-gram model will automatically create vector repre-
sentations for the two words that are similar in the same,
shared vector space.

The number of sentences that mix natural language words
with source code tokens is often insufficient for training good
vector representations in the Skip-gram model. Since the
necessary size of the corpus is proportional with the size
of the vocabulary, we reduce the natural language vocab-
ulary by pre-processing the text with the Porter stemmer.
This effectively collapses derivationally related words such
as draw, draws, drawing, drawable into the same vocabulary
entry draw. Furthermore, using the same corpus we increase
the number of training examples for the Skip-gram model as
follows:

1. Whenever a code token has a name that matches a nat-
ural language word, use both the token and the word
to create training examples for the logistic regression
models (Section 3.1).

2. Apply the logistic regression models on pairs of text
and code that are known to have the same mean-
ing or related meanings, such as class-description and
method-description in API documentations (Section 3.2).

3.1 Heuristic Mapping of Tokens to Words
So far, under the two vocabularies setting, the word “can-

vas” and the token Canvas belong to different vocabularies
and therefore are associated different vector representations.
However, when naming code artifacts such as classes, meth-
ods, or variables, programmers tend to use natural language
words that describe the meaning of the artifact. Further-
more, when referring to the artifact in natural language, pro-
grammers often use the natural language word instead of the
code token. For example, the third section of Figure 7 men-
tions the creation of an object of class Canvas, which is later
referred to using the natural language word ”canvas”. We
exploit this naming tendencies and create additional train-
ing examples for the Skip-gram model by instructing the
model to also train for the natural language word “canvas”
whenever it sees an occurrence of the code token Canvas.
This is done for each code token whose string representa-
tion is identical with the string representation of a word in
the natural language vocabulary. This rule is further gener-
alized to composite token names such as WorkbenchWindow

by first splitting them into atomic names based on capital-
ization patterns, and then checking to see if the atomic code
names match words in the natural language vocabulary. For
example, WorkbenchWindow will generate the natural lan-
guage words “workbench” and “window”, whereas GLScene

will generate the words “GL” and “scene” (“GL” is consid-
ered a natural language word because it appears in natural
language sentences such as “Each GL command consists of
the library prefix, followed by the command name”). Note
that the application of this heuristic rule implicitly leads to
richer contexts. In the example from Figure 7, the code to-
ken Drawable from the context of “render” is mapped to the
natural language word “drawable”, which has the same stem

Figure 8: Example of semantically related text and
code, from the same tutorial.

void connect(IStreamsProxy streamsProxy)

Connects this console to the given streams proxy. This associates

the standard in, out, and error streams with the console. Key-

board input will be written to the given proxy.

Figure 9: Example of semantically related text and
code, from API documents.

as the word “draw” that appears in the context of GLScene.

3.2 Semantic Pairings between Text and Code
Source code is often paired with natural language state-

ments that describe its behavior. Such semantic pairings
between text and code can be automatically extracted from
tutorial examples (Figure 8) and API documents (Figure 9).
To force the two meaning representations (the bag-of-word-
embeddings and the bag-of-token-embeddings) to be similar,
we augment the Skip-gram model to predict all code tokens
from each text word, and all text words from each code
token, as shown in Figure 10. This effectively pushes the
embeddings for the text words and the code tokens towards
each other: if wt is a word embedding and wk is a token
embedding, both with the same norm, the logistic sigmoid
in Equation 1 is maximized when wk = wt.

Figure 10: Positive pairs generated from semanti-
cally related text and code.

4. FROM WORD EMBEDDINGS TO
DOCUMENT SIMILARITIES

Given two words wt and wu, we define their semantic sim-
ilarity as the cosine similarity between their learned word
embeddings:

sim(wt, wu) = cos(wt,wu) =
wT

t wu

‖wt‖‖wu‖
(3)

This is simply the inner product of the two vectors, normal-
ized by their Euclidean norm. To compute the similarity



between two bags-of-words T (e.g. natural language text)
and S (e.g. source code), we modified the text-to-text simi-
larity measure introduced by Mihalcea et al. [28]. According
to [28], the similarity between a word w and a bag of words
T is computed as the maximum similarity between w and
any word w′ in T :

sim(w, T ) = max
w′∈T

sim(w,w′) (4)

An asymmetric similarity sim(T→S) is then computed as a
normalized, idf -weighted sum of similarities between words
in T and the entire bag-of-words in S:

sim(T→S) =

∑
w∈T

sim(w, S) ∗ idf(w)∑
w∈T

idf(w)
(5)

The asymmetric similarity sim(S → T ) is computed anal-
ogously, by swapping S and T in the formula above. Fi-
nally, the symmetric similarity sim(T, S) between two bags-
of-words T and S is defined in [28] as the sum of the two
asymmetric similarities:

sim(T, S) = sim(T→S) + sim(S→T ) (6)

To keep the system self-contained, we could compute the idf
weights from the collection of documents T in the dataset.
For example, in the bug localization task, the idf weights
would be computed from the collection of source code files.
However, this is bound to result in small document frequen-
cies for many English words, which in turn make the idf
estimates unreliable. To avoid this problem, we eliminated
the idf weighting from the asymmetric similarities. Fur-
thermore, we simplified the asymmetric similarity formula
by ignoring words that had a zero similarity with the target
document, i.e. words that either do not have a word embed-
ding, or that do not appear in the target document. Thus, if
we define P (T→S) = {w ∈ T |sim(w, S) 6= 0} to be the set
of words in T that have non-zero (positive) similarity with
S, the modified asymmetric similarity between documents
T and S is computed as follows:

sim(T→S) =

∑
w∈P (T→S)

sim(w, S)

|P (T→S)| (7)

The asymmetric similarity sim(S→ T ) is computed analo-
gously, by swapping S and T .

5. FROM DOCUMENT SIMILARITIES
TO RANKING SCORES

The information retrieval systems evaluated in this paper
take as input a query document T expressing a user infor-
mation need and rank all documents S from a large corpus
of documents, such that the documents ranked at the top
are more likely to answer the information need (i.e. relevant
documents). This is usually implemented through a rank-
ing model that computes a ranking score f(T, S) for any
(query, candidate answer) pair. In our work, we consider
ranking functions that are defined as a weighted sum of K
features, where each feature φk(T, S) captures a predefined
relationship between the query document T and the candi-

date answer S:

f(T, S) = wT Φ(T, S) =

K∑
k=1

wk ∗ φk(T, S) (8)

The feature weights wk will be trained on a dataset of au-
tomatically acquired ranking constraints, using a learning-
to-rank technique. In this setting, evaluating the impact of
the new document-to-document similarities based on word
embeddings can be done simply by adding the asymmetric
similarities sim(T→S) and sim(S→T ) as new features in
an existing ranking model.

6. EVALUATION OF WORD EMBEDDINGS
FOR BUG LOCALIZATION

In this section, we describe an extensive set of experi-
ments that are intended to determine the utility of the new
document similarity measures based on word embeddings in
the context of bug localization. This is an information re-
trieval task in which queries are bug reports and the system
is trained to identify relevant, buggy files.

6.1 Text Pre-processing
There are three types of text documents used in the ex-

perimental evaluations in this section: 1) the Eclipse API
reference, developer guides, Java API reference, and Java
tutorials that are used to train the word embeddings; 2)
the bug reports; and 3) the source code files. When cre-
ating bag-of-words for these documents, we use the same
pre-processing steps on all of them: we remove punctuation
and numerical numbers, then split the text by whitespace.

The tokenization however is done differently for each cat-
egory of documents. In the one-vocabulary setting, com-
pound words in the bug reports and the source code files are
split based on capital letters. For example, “Workbench-
Window” is split into “Workbench” and “Window”, while its
original form is also reserved. We then apply the Porter
stemmer on all words/tokens.

In the two-vocabulary setting, a code token such as a
method name“clear is marked as“@clear@”so that it can be
distinguished from the adjective “clear”. Then we stem only
the natural language words. We also split compound natu-
ral language words. In order to separate code tokens from
natural language words in the training corpus, we wrote a
dedicated HTML parser to recognize and mark the code to-
kens. For bug reports, we mark words that are not in an
English dictionary as code tokens. For source code files, all
tokens except those in the comments are marked as code to-
kens. Inside the comments, words that are not in an English
dictionary are also marked as code tokens.

6.2 Corpus for Training Word Embeddings
To train the shared embeddings, we created a corpus from

documents in the following Eclipse repositories: the Plat-
form API Reference, the JDT API Reference, the Birt API
Reference, the Java SE 7 API Reference, the Java tutori-
als, the Platform Plug-in Developer Guide, the Workbench
User Guide, the Plug-in Development Environment Guide,
and the JDT Plug-in Developer Guide. The number of docu-
ments and words/tokens in each repository are shown in Ta-
ble 2. All documents are downloaded from their official web-



Table 1: Benchmark Projects: Eclipse∗ refers to Eclipse Platform UI.
Project Time Range # of bug reports # of bug reports # of bug reports total

used for testing used for training used for tuning
Birt 2005-06-14 – 2013-12-19 583 500 1,500 2,583

Eclipse∗ 2001-10-10 – 2014-01-17 1,656 500 1,500 3,656
JDT 2001-10-10 – 2014-01-14 632 500 1,500 2,632
SWT 2002-02-19 – 2014-01-17 817 500 1,500 2,817

site67. Code tokens in these documents are usually placed
between special HTML tags such as 〈code〉 or emphasized
with different fonts.

Table 2: Documents for training word embeddings.
Data sources Documents Words/Tokens

Platform API Reference 3,731 1,406,768
JDT API Reference 785 390,013
Birt API Reference 1,428 405,910

Java SE 7 API Reference 4,024 2,840,492
The Java Tutorials 1,282 1,024,358

Platform Plug-in Developer Guide 343 182,831
Workbench User Guide 426 120,734

Plug-in Development Environment Guide 269 90,356
JDT Plug-in Developer Guide 164 64,980

Total 12,452 6,526,442

Table 3: The vocabulary size.
Word embeddings trained on: Vocabulary size

one-vocabulary setting 21,848
two-vocabulary setting 25,676

Table 4: Number of word pairs.
Approach # of word pairs

One-vocabulary embeddings 238,612,932
Two-vocabulary embeddings 329,615,650

SEWordSim [42] 5,636,534
SWordNet [45] 1,382,246

To learn the shared embeddings, we used the Skip-gram
model, modified such that it works in the training scenarios
described in Section 3. Table 3 shows the number of words
in each vocabulary setting. Table 4 compares the number of
word pairs used to train word embeddings in the one- and
two-vocabulary settings with the number of word pairs used
in two related approaches. Thus, when word embeddings
are trained on the one-vocabulary setting, the vocabulary
size is 21,848, which leads to 238,612,932 word pairs during
training. This number is over 40 times the number of word
pairs in SEWordSim [42], and is more than 172 times the
number of word pairs in SWordNet [45].

6.3 Benchmark Datasets
We perform evaluations on the fined-grained benchmark

dataset from [46]. Specifically, we use four open-source Java
projects: Birt8, Eclipse Platform UI9, JDT10, and SWT11.

6http://docs.oracle.com/javase/7/docs
7http://www.eclipse.org/documentation
8https://www.eclipse.org/birt/
9http://projects.eclipse.org/projects/eclipse.platform.ui

10http://www.eclipse.org/jdt/
11http://www.eclipse.org/swt/

For each of the 10,000 bug reports in this dataset, we check-
out a before-fixed version of the source code, within which
we rank all the source code files for the specific bug report.

Since the training corpus for word embeddings (shown in
Table 2) contains only Java SE 7 documents, for testing we
use only bug reports that were created for Eclipse versions
starting with 3.8, which is when Eclipse started to add Java
SE 7 support. The Birt, JDT, and SWT projects are all
Eclipse Foundation projects, and also support Java SE 7 af-
ter the Eclipse 3.8 release. Overall, we collect for testing
583, 1656, 632, and 817 bug reports from Birt, Eclipse Plat-
form UI, JDT, and SWT, respectively. Older bug reports
that were reported for versions before release 3.8 are used
for training and tuning the learning-to-rank systems.

Table 1 shows the number of bug reports from each project
used in the evaluation. The methodology used to collect the
bug reports is discussed at length in [46]. Here we split the
bug reports into a testing set, a training set, and a tuning set.
Taking Eclipse Platform UI for example, the newest 1,656
bug reports, which were reported starting with Eclipse 3.8,
are used for testing. The older 500 bug reports in the train-
ing set are used for learning the weight parameters of the
ranking function in Equation 8, using the SVMrank package
[14, 15]. The oldest 1,500 bug reports are used for tuning the
hyper-parameters of the Skip-gram model and the SVMrank

model, by repeatedly training on 500 and testing on 1000
bug reports. To summarize, we tune the hyper-parameters
of the Skip-gram model and the SVMrank model on the tun-
ing dataset, then train the weight vector used in the ranking
function on the training dataset, and finally test and report
the ranking performance on the testing dataset. After tun-
ing, the Skip-gram model was train to learn embeddings of
size 100, with a context window of size 10, a minimal word
count of 5, and a negative sampling of 25 words.

6.4 Results and Analysis
We ran extensive experiments for the bug localization

task, in order to answer the following research questions:

RQ1: Do word embeddings help improve the ranking perfor-
mance, when added to an existing strong baseline?

RQ2: Do word embeddings trained on different corpora change
the ranking performance?

RQ3: Do the word embedding training heuristics improve
the ranking performance, when added to the vanilla
Skip-gram model?

RQ4: Do the modified text similarity functions improve the
ranking performance, when compared with the original
similarity function in [28]?

We use the Mean Average Precision (MAP) [23], which is
the mean of the average precision values for all queries, and



Table 5: MAP and MRR for the 5 ranking systems.
Project Metric LR+WE1 LR+WE2 LR WE1 WE2

φ1-φ8 φ1-φ8 φ1-φ6 φ7-φ8 φ7-φ8

Eclipse MAP 0.40 0.40 0.37 0.26 0.26
Platform UI MRR 0.46 0.46 0.44 0.31 0.31

JDT MAP 0.42 0.42 0.35 0.22 0.23
MRR 0.51 0.52 0.43 0.27 0.29

SWT MAP 0.38 0.38 0.36 0.25 0.25
MRR 0.45 0.45 0.43 0.30 0.30

Birt MAP 0.21 0.21 0.19 0.13 0.13
MRR 0.27 0.27 0.24 0.17 0.17

the Mean Reciprocal Rank (MRR) [43], which is the har-
monic mean of ranks of the first relevant documents, as the
evaluation metrics. MAP and MRR are standard evaluation
metrics in IR, and were used previously in related work on
bug localization [38, 46, 47].

6.4.1 RQ1: Do word embeddings help improve the
ranking performance?

The results shown in Table 5 compare the LR system in-
troduced in [46] with a number of systems that use word
embeddings in the one- and two-vocabulary settings, as fol-
lows: LR+WE1 refers to combining the one-vocabulary
word-embedding-based features with the six features of the
LR system from [46], LR+WE2 refers to combining the
two-vocabulary word-embedding-based features with the LR
system, WE1 refers to using only the one-vocabulary word-
embedding-based features, and WE2 refers to using only
the two-vocabulary word-embedding-based features. The
parameter vector of each ranking system is learned auto-
matically. The results show that the new word-embedding-
based similarity features, when used as additional features,
improve the performance of the LR system. The results of
both LR+WE1 and LR+WE2 show that the new features
help achieve 8.1%, 20%, 5.6%, and 16.7% relative improve-
ments in terms of MAP over the original LR approach, for
Eclipse Platform UI, JDT, SWT, and Birt respectively. In
[46], LR was reported to outperform other state-of-the-art
bug localization models such as the VSM-based BugLocator
from Zhou et al. [47] and the LDA-based BugScout from
Nguyen et al. [32].

Another observation is that using word embeddings trained
on one-vocabulary and using word embeddings trained on
two-vocabulary achieve almost the same results. By look-
ing at a sample of API documents and code, we discovered
that class names, method names, and variable names are
used with a consistent meaning throughout. For example,
developers use Window to name a class that is used to cre-
ate a window instance, and use open to name a method
that performs an open action. Therefore, we believe the
two-vocabulary setting will be more useful when word em-
beddings are trained on both software engineering (SE) and
natural language (NL) corpora (e.g. Wikipedia), especially
in situations in which a word has NL meanings that do not
align well with its SE meanings. For example, since eclipse
is used in NL mostly with the astronomical sense, it makes
sense for eclipse to be semantically more similar with light
than ide. However, in SE, we want eclipse to be more sim-
ilar to ide and platform than to total, color, or light. By
training separate embeddings for eclipse in NL contexts (i.e.
eclipse NL) vs. eclipse in SE contexts (i.e. eclipse SE), the
expectation is that, in an SE setting, the eclipse SE embed-

Table 6: Results on easy (T1) vs. difficult (T2) bug
reports, together with # of bug reports (size) and
average # of relevant files per bug report (avg).

T1 T2

LR+WE1 LR LR+WE1 LR
Size/Avg 322/2.11 1,334/2.89

Eclipse MAP 0.80 0.78 0.30 0.27
MRR 0.89 0.87 0.36 0.33

Size/Avg 84/2.60 548/2.74
JDT MAP 0.79 0.75 0.36 0.29

MRR 0.90 0.87 0.45 0.37
Size/Avg 376/2.35 441/2.57

SWT MAP 0.57 0.55 0.22 0.21
MRR 0.66 0.65 0.27 0.26

Size/Avg 27/2.48 556/2.24
Birt MAP 0.48 0.54 0.20 0.17

MRR 0.62 0.69 0.25 0.22

ding would be more similar with the ide SE embedding than
the total SE or color SE embeddings.

Kochhar et al. [17] reported from an empirical study that
the localized bug reports, which explicitly mention the rele-
vant file names, “statistically significantly and substantially”
impact the bug localization results. They suggested that
there is no need to run automatic bug localization techniques
on these bug reports. Therefore, we separate the testing bug
reports for each project into two subsets T1 (easy) and T2
(difficult). Bug reports in T1 mention either the relevant
file names or their top-level public class names, whereas T2
contains the other bug reports. Note that, although bug
reports in T1 make it easy for the programmer to find a
relevant buggy file, there may be other relevant files associ-
ated with the same bug report that could be more difficult
to identify, as shown in the statistics from Table 6.

Table 6 shows the MAP and MRR results on T1 and T2.
Because LR+WE1 and LR+WE2 are comparable on the
test bug reports, here we compare only LR+WE1 with
LR. The results show that both LR+WE1 and LR achieve
much better performance on bug reports in T1 than T2 for
all projects. This confirms the conclusions of the empirical
study from Kochhar et al. [17]. The results in Table 6 also
show that overall using word embeddings helps on both T1
and T2. One exception is Birt, where the use of word em-
beddings hurts performance on the 27 easy bugs in T1, a
result that deserves further analysis in future work.

To summarize, we showed that using word embeddings to
create additional semantic similarity features helps improve
the ranking performance of a state-of-the-art approach to
bug localization. However, separating the code tokens from
the natural language words in two vocabularies when train-
ing word embeddings on the SE corpus did not improve the
performance. In future work, we plan to investigate the util-
ity of the two-vocabulary setting when training with both
SE and NL corpora.

6.4.2 RQ2: Do word embeddings trained on a differ-
ent corpora change the ranking performance?

To test the impact of the training corpus, we train word
embeddings in the one-vocabulary setting using the Wiki
data dumps12, and redo the ranking experiment. The ad-

12https://dumps.wikimedia.org/enwiki/



Table 7: The size of the different corpora.
Corpus Vocabulary Words/Tokens

Eclipse and Java 21,848 6,526,442
Wiki 2,098,556 3,581,771,341

Table 8: Comparison of the LR+WE1 results when
using word embeddings trained on different corpora.

Corpus Metric Eclipse JDT SWT Birt
Metric Platform UI

Eclipse and Java MAP 0.40 0.42 0.38 0.21
documents MRR 0.46 0.51 0.45 0.27

Wiki MAP 0.40 0.41 0.38 0.21
MRR 0.46 0.51 0.45 0.27

vantage of using the Wiki corpus is its large size for training.
Table 7 shows the size of the Wiki corpus. The number of
words/tokens in the Wiki corpus is 548 times the number in
our corpus, while its vocabulary size is 96 times the vocab-
ulary size of our corpus. Theoretically, the larger the size
of the training corpus the better the word embeddings. On
the other hand, the advantage of the smaller training corpus
in Table 2 is that its vocabulary is close to the vocabulary
used in the queries (bug reports) and the documents (source
code files).

Table 8 shows the ranking performance by using the Wiki
embeddings. Results show that the project specific em-
beddings achieve almost the same MAP and MRR for all
projects as the Wiki embeddings. We believe one reason for
the good performance of the Wiki embeddings is the pre-
processing decision to split compound words such as Work-

benchWindow that do not appear in the Wiki vocabulary
into their components words Workbench and Window, which
belong to the Wiki vocabulary. Correspondingly, Table 9 be-
low shows the results of evaluating just the word-embeddings
features (WE1) on the Eclipse project with the two types
of embeddings, with and without splitting compound words.
As expected, the project-specific embeddings have better
performance than the Wiki-trained embeddings when com-
pound words are not split; the comparison is reversed when
splitting is used. Overall, each corpus has its own advan-

Table 9: Project-specific vs. Wikipedia embed-
dings performance of WE1 features, with and with-
out splitting compound words.

Project Metric No Split Split
Eclipse/Java MAP 0.254 0.260

MRR 0.307 0.310
Wikipedia MAP 0.248 0.288

MRR 0.300 0.346

tages: while the embeddings trained on the project-specific
corpus may better capture specific SE meanings, the em-
beddings trained on Wikipedia may benefit from the sub-
stantially larger amount of training examples. Given the
complementary advantages, in future work we plan to inves-
tigate training strategies that exploit both types of corpora.

6.4.3 RQ3: Do the word embedding training heuris-
tics improve the ranking performance?

Table 10 shows the results of using the original Skip-gram

Table 10: LR+WE1 results obtained using the en-
hanced vs. the original Skip-gram model.

Project Metric LR Enhanced Skip-gram Original Skip-gram
φ1-φ8 φ1-φ6 φ1-φ8

Eclipse MAP 0.37 0.40 0.40
Platform UI MRR 0.44 0.46 0.46

JDT MAP 0.35 0.42 0.42
MRR 0.43 0.51 0.51

SWT MAP 0.36 0.38 0.37
MRR 0.43 0.45 0.44

Birt MAP 0.19 0.21 0.21
MRR 0.24 0.27 0.27

model without applying the heuristic techniques discussed in
Sections 3.1 and 3.2. It shows that both the enhanced and
the original Skip-gram model achieve the same results most
of the time. These results appear to indicate that increasing
the number of training pairs for word embeddings will not
lead to further improvements in ranking performance, which
is compatible with the results of using the Wiki corpus vs.
the much smaller project-specific corpora.

6.4.4 RQ4: Do the modified text similarity functions
improve the ranking performance?

Table 11 below compares the new text similarity func-
tions shown in Equation 7 with the original text similarity
function from Mihalcea et al. [28], shown in Equation 6.
In WE1

ori, the new features φ7 and φ8 are calculated using
the one-vocabulary word embeddings and the original idf -
weighted text similarity function. The results of LR+WE1

and LR are copied from Table 5, for which φ7 and φ8 are
calculated using the new text similarity functions.

Table 11: Comparison between the new text similar-
ity function (LR+WE1) and the original similarity
function (LR+WE1

ori).

Project Metric LR LR+WE1 LR+WE1
ori

φ1-φ8 φ1-φ6 φ7-φ8

Eclipse MAP 0.37 0.40 0.37
Platform UI MRR 0.44 0.46 0.43

JDT MAP 0.35 0.42 0.36
MRR 0.43 0.51 0.45

SWT MAP 0.36 0.38 0.37
MRR 0.43 0.45 0.44

Birt MAP 0.19 0.21 0.20
MRR 0.24 0.27 0.25

Results show that the new text similarity features lead
to better performance than using the original text similar-
ity function. The new features obtain a 20% relative im-
provement in terms of MAP over the LR approach, while
features calculated based on the original text similarity func-
tion achieve only a 3% relative improvement.

7. EVALUATION OF WORD EMBEDDINGS
FOR API RECOMMENDATION

To assess the generality of using document similarities
based on word embeddings for information retrieval in soft-
ware engineering, we evaluate the new similarity functions
on the problem of linking API documents to Java questions
posted on the community question answering (cQA) website
Stack Overflow (SO). The SO website enables users to ask



and answer computer programming questions, and also to
vote on the quality of questions and answers posted on the
website. In the Question-to-API (Q2API) linking task, the
aim is to build a system that takes as input a user’s question
in order to identify API documents that have a non-trivial
semantic overlap with the (as yet unknown) correct answer.
We see such a system as being especially useful when users
ask new questions, for which they would have to wait until
other users post their answers. Recommending relevant API
documents to the user may help the user find the answer on
their own, possibly even before the correct answer is posted
on the website. To the best of our knowledge, the Q2API
task for cQA websites has not been addressed before.

In order to create a benchmark dataset, we first extracted
all questions that were tagged with the keyword ’java’, us-
ing the datadump archive available on the Stack Exchange
website. Of the 1,493,883 extracted questions, we used a
script to automatically select only the questions satisfying
the following criteria:

1. The question score is larger than 20, which means that
more than 20 people have voted this question as “use-
ful”.

2. The question has answers of which one was checked as
the “correct” answer by the user who asked the ques-
tion.

3. The “correct” answer has a score that is larger than 10,
which means that more than 10 people gave a positive
vote to this answer.

4. The “correct” answer contains at least one link to an
API document in the official Java SE API online ref-
erence (versions 6 or 7).

This resulted in a set of high quality 604 questions, whose
correct answers contain links to Java API documents. We
randomly selected 150 questions and asked two proficient
Java programmers to label the corresponding API links as
helpful or not helpful. The remaining 454 questions were
used as a (noisy) training dataset. Out of the 150 randomly
sampled questions, the 111 questions that were labeled by
both annotators as having helpful API links were used for
testing. The two annotators were allowed to look at the
correct answer in order to determine the semantic overlap
with the API document.

Although we allow API links to both versions 6 and 7, we
train the word embeddings in the one-vocabulary setting,
using only the Java SE 7 API documentations and tutorials.
There are 5,306 documents in total, containing 3,864,850
word tokens.

We use the Vector Space Model (VSM) as the baseline
ranking system. Given a question T , for each API docu-
ment S we calculate the VSM similarity as feature φ1(T, S)
and the asymmetric semantic similarities that are based on
word embeddings as features φ2(T, S) and φ3(T, S). In the
VSM+WE system, the file score of each API document is
calculated as the weighted sum of these three features, as
shown in Equation 8. During training on the 454 questions,
the objective of the learning-to-rank system is to find weights
such that, for each training question, the relevant (helpful)
API documents are ranked at the top. During evaluation on
the 111 questions in the test dataset, we rank all the Java

Table 12: Results on the Q2API task.
Approach MAP MRR

VSM 0.11 0.12
VSM+WE 0.35 0.39

API documents S for each question T in descending order
of their ranking score f(T, S).

Table 12 shows the MAP and MRR performance of the
baseline VSM system that uses only the VSM similarity fea-
ture, vs. the performance of the VSM+WE system that also
uses the two semantic similarity features. The results in this
table indicate that the document similarity features based
on word embeddings lead to substantial improvements in
performance. As such, these results can serve as an addi-
tional empirical validation of the utility of word embeddings
for information retrieval tasks in software engineering.

We note that these results are by no means the best results
that we expect for this task, especially since the new features
were added to a rather simple VSM baseline. For example,
instead of treating SO questions only as bags of undiffer-
entiated words, the questions could additionally be parsed
in order to identify code tokens or code-like words that are
then disambiguated and mapped to the corresponding API
entities [1, 9, 40]. Given that, like VSM, these techniques
are highly lexicalized, we expect their performance to im-
prove if used in combination with additional features based
on word embeddings.

8. RELATED WORK
Related work on word embedding in NLP was discussed in

Section 2. In this section we discuss other methods for com-
puting word similarities in software engineering and related
approaches for bridging the lexical gap in software engineer-
ing tasks.

8.1 Word Similarities in SE
To the best of our knowledge, word embedding techniques

have not been applied before to solve information retrieval
tasks in SE. However, researchers [13, 44, 45] have proposed
methods to infer semantically related software terms, and
have built software-specific word similarity databases [41,
42].

Tian et al. [41, 42] introduce a software-specific word
similarity database called SEWordSim that was trained on
StackOverflow questions and answers. They represent words
in a high-dimensional space in which every element within
the vector representation of word wi is the Positive Pointwise
Mutual Information (PPMI) between wi and another word
wj in the vocabulary. Because the vector space dimension
equals the vocabulary size, the scalability of their vector rep-
resentation is limited by the size of the vocabulary. When
the size of the training corpus grows, the growing vector
dimension will lead to both larger time and space complex-
ities. Recent studies [3, 29] also showed that this kind of
traditional count-based language models were outperformed
by the neural-network-based low-dimensional word embed-
ding models on a wide range of word similarity tasks.

Howard et al. [13] and Yang et al. [45] infer semanti-
cally related words directly from comment-code, comment-
comment, or code-code pairs without creating the distri-
butional vector representations. They first need to map a



line of comment (or code) to another line of comment (or
code), and then infer word pairs from these line pairs. Sim-
ilarly, Wang et al. [44] infer word similarities from tags in
FreeCode. The main drawback of these approaches is that
they rely solely on code, comments, and tags. More general
free-text contents are ignored. Many semantically related
words (e.g. “placeholder” and “view”) are not in the source
code but in the free-text contents of project documents (e.g.
the Eclipse user guide, developer guide, and API document
shown in Figure 3 to Figure 5). However, these types of
documents are not exploited in these approaches.

More importantly, all the above approaches did not ex-
plain how word similarities can be used to estimate docu-
ment similarities. They reported user studies in which hu-
man subjects were recruited to evaluate whether the word
similarities are accurate. However, these subjective evalua-
tions do not tell whether and how word similarities can be
used in solving IR tasks in SE.

8.2 Bridging the Lexical Gap to Support
Software Engineering Tasks

Text retrieval techniques have been shown to help in var-
ious SE tasks [11, 24]. However, the system performance
is usually suboptimal due to the lexical gap between user
queries and code [27]. To bridge the lexical gap, a number
of approaches [2, 5, 10, 27, 39, 46] have been recently pro-
posed that exploit information from API documentations.
These approaches extract API entities referenced in code,
and use the corresponding documentations to enhance the
ranking results.

Specifically, McMillan et al. [27] measure the lexical sim-
ilarity between the user query and API entities, then rank
higher the code that uses the API entities with higher simi-
larity scores. Bajracharya et al. [2] augment the code with
tokens from other code segments that use the same API en-
tries. Ye et al. [46] concatenate the descriptions of all API
entries used in the code, and directly measure the lexical
similarity between the query and the concatenated docu-
ment. The main drawback of these approaches is that they
consider only the API entities used in the code. The doc-
umentations of other API entities are not used. Figure 1
shows the Eclipse bug 384108. Figure 2 shows its relevant file
PartServiceImpl.java. Figure 5 shows the description of an
API entry IPageLayout. Although IPageLayout is not used
in PartServiceImpl.java, its API descriptions contains useful
information that can help bridge the lexical gap by mapping
the term“view”in bug 384108 with the term“placeholder” in
PartServiceImpl.java. Therefore, to bridge the lexical gap,
we should consider not only the descriptions of the API enti-
ties used in the code but also all API documents and project
documents (e.g. the user guide shown in Figure 3 and the
developer guide in Figure 4) that are available.

Latent Semantic Indexing (LSI) and Latent Dirichlet Al-
location (LDA) have been used in the area of feature loca-
tion and bug localization. Poshyvanyk et al. [35, 36] use
LSI to reduce the dimension of the term-document matrix,
represent code and queries as vectors, and estimate the sim-
ilarity between code and queries using the cosine similarity
between their vector representations. Similarly, Nguyen et
al. [32] and Lukins et al. [22] use LDA to represent code and
queries as topic distribution vectors. Rao et al. [37] compare
various IR techniques on bug localization, and report that
traditional IR techniques such as VSM and Unigram Model

(UM) outperform the more sophisticated LSI and LDA tech-
niques. These approaches create vector representations for
documents instead of words and estimate query-code simi-
larity based on the cosine similarity between their vectors.
McMillan et al. [26] introduced a LSI-based approach for
measuring program similarity, and showed that their model
achieve higher precision than a LSA-based approach [16] in
detecting similar applications. All these works neither mea-
sure word similarities nor try to bridge the lexical gap be-
tween code and queries.

9. FUTURE WORK
We plan to explore alternative methods for aggregating

word-level similarities into a document-level similarity func-
tion, such as the Word Mover’s Distance recently proposed
in [18]. In parallel, we will explore methods that train doc-
ument embeddings directly, such as the Paragraph Vectors
of Le and Mikolov [20], and investigate their generalization
from shallow bags-of-words inputs to higher level structures,
such as sequences and (abstract) syntax trees.

10. CONCLUSION
We introduced a general approach to bridging the lexi-

cal gap between natural language text and source code by
projecting text and code as meaning vectors into a shared
representation space. In the proposed architecture, word
embeddings are first trained on API documents, tutorials,
and reference documents, and then aggregated in order to es-
timate semantic similarities between documents. Empirical
evaluations show that the learned vector space embeddings
lead to improvements when added to a previous state-of-the-
art approach to bug localization. Furthermore, preliminary
experiments on a newly defined task of linking API docu-
ments to computer programming questions show that word
embeddings also improve the performance of a simple VSM
baseline on this task.
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