Machine Learning
CS690

Lecture 05

Razvan C. Bunescu
School of Electrical Engineering and Computer Science
bunescu@ohio.edu
Decision Tree Learning

- Target output is discrete (i.e. binary, or multiple classes).
 - PlayTennis $\in \{Yes, No\}$.

- Features have finite cardinality (i.e. nominal features).
 - Outlook $\in \{Sunny, Overcast, Rain\}$.
 - Temperature $\in \{Cool, Mild, Hot\}$.
 - Humidity $\in \{Normal, High\}$.
 - Wind $\in \{Weak, Strong\}$.

- Target model requires disjunctive description in terms of features \Rightarrow use Decision Trees.
Decision Trees

Lecture 05

Outlook

- Sunny
 - Humidity
 - High
 - No
 - Normal
 - Yes
 - Overcast
- Rain
 - Wind
 - Strong
 - No
 - Weak
 - Yes
Decision Trees

Decision Tree \iff Disjunction of conjunctions of constraints on the attribute values of instances.

\begin{verbatim}
(Outlook = Sunny \land Humidity = Normal) \\
\lor (Outlook = Overcast) \\
\lor (Outlook = Rain \land Wind = Weak)
\end{verbatim}
Decision Tree Learning

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>Play/Tennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D5</td>
<td>Rain</td>
<td>Cold</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D6</td>
<td>Rain</td>
<td>Cold</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D7</td>
<td>Overcast</td>
<td>Cold</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D8</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D9</td>
<td>Sunny</td>
<td>Cold</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D11</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D12</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D13</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>
Decision Tree Learning

• There may be many decision trees consistent with a set of training examples:
 – Q: Which decision tree should be selected?
 – A: Prefer shorter trees over larger trees.
 ⇒ the ID3 Algorithm for learning decision trees.

Occam’s razor:
Prefer the simplest hypothesis that fits the data.
The ID3 Algorithm

• At each node:
 – Select the feature that results in the largest expected reduction in entropy for the target label.
 ⇔ select the feature with largest information gain.

• \(D = \) the training data
• \(T = \) the random variable corresponding to PlayTennis.

\[
p(T = \text{yes}) = \frac{9}{14} \quad p(T = \text{no}) = \frac{5}{14}
\]

\[
\Rightarrow H(T; D) = - \sum_i p(x_i) \log p(x_i)
\]

\[
= - \left\{ \frac{9}{14} \log \frac{9}{14} + \frac{5}{14} \log \frac{5}{14} \right\} \approx 0.940
\]
The ID3 Algorithm

• Suppose we split on feature X that has k values $\{x_1, \ldots, x_k\}$
• Let D_i be the set of instances where $X = x_i$.
• The expected reduction in entropy is:

\[
IG(X; D) = H(T; D) - \sum_{i=1}^{k} \frac{|D_i|}{|D|} H(T; D_i)
\]

• Choose the feature that maximizes the information gain:

\[
\hat{X} = \arg \max_X IG(X; D)
\]
The ID3 Algorithm

\[
D = \{9+, 5-\} \\
H(T;D) = 0.940
\]

\[
\begin{align*}
D &= \{9+,5-\} \\
H(T;D) &= 0.940
\end{align*}
\]

\[
\begin{align*}
D_1 &= \{6+,2-\} \\
H(T;D_1) &= 0.811
\end{align*}
\]

\[
\begin{align*}
D_2 &= \{3+,3-\} \\
H(T;D_2) &= 1.00
\end{align*}
\]

\[
IG(Wind;D) = 0.940 - (8/14)*0.811 - (6/14)*1.00 = 0.048
\]
The ID3 Algorithm

\[IG(\text{Wind}; D) = 0.048 \]
\[IG(\text{Humidity}; D) = 0.151 \]
\[IG(\text{Temperature}; D) = 0.029 \]
\[IG(\text{Outlook}; D) = 0.246 \]

\[\Rightarrow \text{select } X = \text{Outlook} \text{ to split at the root.} \]

\[D = \{9+,5-\} \]

\[\text{Outlook} \]
\[\text{Sunny} \rightarrow \{2+,3-\} \]
\[\text{Overcast} \rightarrow \{4+,0-\} \]
\[\text{Rain} \rightarrow \{3+,2-\} \]

Lecture 05
The ID3 Algorithm

- Repeatedly apply the Information Gain criterion to select the best attribute for each nonterminal node.
 - set D to the training examples for that node.
 - use only remaining attributes.

\[D = \{9+,5-\} \]

- Outlook
 - Sunny
 - \{2+,3-\}
 - ?
 - Overcast
 - \{4+,0-\}
 - Yes
 - Rain
 - \{3+,2-\}
 - ?
The ID3 Algorithm

Algorithm ID3(Training data D, Features F):

- if all examples in D have the same label:
 - return a leaf node with that label

- let $X \in F$ be the feature with the largest information gain
- let T be a tree root labeled with feature X.
- let D_1, D_2, \ldots, D_k be the partition produced by splitting D on feature X
- for each $D_i \in \{D_1, D_2, \ldots, D_k\}$:
 - let $T_i = \text{ID3}(D_i, F - \{X\})$
 - add T_i as a new branch of T

return T
Overfitting

- ID3 learns a tree that classifies the training data perfectly.
- The learned tree may not lead to the tree with the best generalization performance on unseen (test) data.

learning which patients have a form of diabetes.

Lecture 05
Overfitting

- Maximum number of leaf nodes is $N = \# \text{ training examples}$ \implies no generalization outside of the training data.
- When small number of examples are associated with leaf nodes:
 - some attribute that is unrelated to the actual target function happens to partition the examples very well.
- When training examples contain random noise:
 - consider adding (false) negative example:

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>PlayTennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>D15</td>
<td>Sunny</td>
<td>Hot</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>
Overfitting

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>PlayTennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>D15</td>
<td>Sunny</td>
<td>Hot</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>

Outlook

- Sunny
- Overcast
- Rain

Humidity

- High
- Normal

Wind

- Strong
- Weak

\[\{+D_9,+D_{11},-D_{15}\}\]
Methods for Reducing Overfitting

• Two types of methods:
 1) Stop growing the tree before it perfectly classifies the training data.
 2) Allow the tree to overfit the data, then prune the tree.

• Criteria for determining the right size of the tree:
 – Use a validation set to evaluate utility of pruning nodes.
 – Use a statistical test (χ^2) to determine whether expanding a particular node is likely to produce improvement over entire instance distribution.
 – Minimal Description Length (MDL): determine if additional nodes leads to less complex hypothesis than just remembering any exceptions that result from pruning.
Reduced Error Prunning

1. grow a complete tree from the training data
2. while accuracy on validation set is non-decreasing:
 3. for each internal node in the tree:
 4. temporarily prune the subtree and replace it with a leaf labeled with the majority class
 5. measure the accuracy of the pruned tree on validation set
 6. permanently prune the node that results in greatest accuracy.

⇒ leaf nodes created due to chance regularities in training data are likely to be pruned.

• Drawback: “wastes” validation dataset, instead of using it for training.

[Quinlan, 1987]
Reduced Error Pruning

[Quinlan, 1987]