Neurons

Soma is the central part of the neuron:
• where the input signals are combined.

Dendrites are cellular extensions:
• where majority of the input occurs.

Axon is a fine, long projection:
• carries nerve signals to other neurons.

Synapses are molecular structures between axon terminals and other neurons:
• where the communication takes place.
Neurons & Perceptrons

- **Biological Interpretation:**
 - The output of the neuron is a linear combination of inputs from other neurons, rescaled by the synaptic weights.
 - It is often transformed through a monotonic function such as *signum*, or *sigmoid*.
 - Weights w_i correspond to the synaptic weights (activating or inhibiting).
 - Summation corresponds to combination of signals in the soma.
The Perceptron Algorithm: Two Classes

1. **initialize** parameters $w = 0$
2. **for** $i = 1 \ldots n$
3. $y_i = \text{sgn}(w^T \varphi(x_i))$
4. **if** $y_i \neq t_i$ **then**
5. $w = w + t_i \varphi(x_i)$

Repeat:
- (a) until convergence.
- (b) for a number of epochs E.

Theorem [Rosenblatt, 1962]:
If the training dataset is **linearly separable**, the perceptron learning algorithm is guaranteed to find a solution in a finite number of steps.
- see Theorem 1 (Block, Novikoff) in [Freund & Schapire, 1999].
Motivation: Error function minimization

- Error: total number of misclassified patterns?
 - piecewise constant function of \(w \) with discontinuities.
 - cannot use gradient methods (gradient zero almost everywhere).

- The *Perceptron Criterion*:
 - Assume classes \(T = \{ c_1, c_2 \} = \{-1, +1\} \).
 - Want \(w^T \varphi(x_n) \geq 0 \) for \(t_n = +1 \), and \(w^T \varphi(x_n) < 0 \) for \(t_n = -1 \).
 \[\Rightarrow \text{would like to have } w^T \varphi(x_n) t_n > 0 \text{ for all patterns.} \]
 \[\Rightarrow \text{want to minimize } -w^T \varphi(x_n) t_n \text{ for all misclassified patterns.} \]

\[\Rightarrow \text{minimize } E_P(w) = - \sum_{n \in M} w^T \varphi(x_n) t_n \]
The Perceptron Algorithm as Stochastic Gradient Descent

- Update parameters \mathbf{w} sequentially:

$$
\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_P(\mathbf{w}^{(\tau)}, x_n)
$$

$$
\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \eta \varphi(x_n)t_n
$$

- The magnitude of \mathbf{w} is inconsequential $\Rightarrow \eta = 1$.
The Perceptron Algorithm: K classes

1. **initialize** parameters \(w = 0 \)
2. **for** \(i = 1 \) … \(n \)
3. \(y_i = \arg \max_{t \in T} w^T \varphi(x_i, t) \)
4. **if** \(y_i \neq t_i \) **then**
5. \(w = w + \varphi(x_i, t_i) - \varphi(x_i, y_i) \)

During testing:
\[
 t^* = \arg \max_{t \in T} w^T \phi(x, t)
\]
Averaged Perceptron

1. **initialize** parameters $\mathbf{w} = 0$, $\tau = 1$, $\overline{\mathbf{w}} = 0$
2. **for** $i = 1 \ldots n$
3. $y_i = sgn(\mathbf{w}^T \varphi(\mathbf{x}_i))$
4. **if** $y_i \neq t_i$ **then**
5. $\mathbf{w} = \mathbf{w} + t_i \varphi(\mathbf{x}_i)$
6. $\overline{\mathbf{w}} = \overline{\mathbf{w}} + \mathbf{w}$
7. $\tau = \tau + 1$
8. **return** $\overline{\mathbf{w}} / \tau$

During testing: $t^* = sgn \overline{\mathbf{w}}^T \varphi(\mathbf{x})$

Repeat:
 a) until convergence.
 b) for a number of epochs E.
Averaged Perceptron: K classes

1. initialize parameters $w = 0$, $\tau = 1$, $\bar{w} = 0$
2. for $i = 1 \ldots n$
3. $y_i = \arg \max_{t \in T} w^T \varphi(x_i, t)$
4. if $y_i \neq t_i$ then
5. $w = w + \varphi(x_i, t_i) - \varphi(x_i, y_i)$
6. $\bar{w} = \bar{w} + w$
7. $\tau = \tau + 1$
8. return \bar{w} / τ

During testing: $t^* = \arg \max_{t \in T} \bar{w}^T \varphi(x, t)$
The Perceptron Algorithm: Two Classes

1. **initialize** parameters \(w = 0 \)
2. **for** \(i = 1 \ldots n \)
3. \(y_i = \text{sgn}(w^T \varphi(x_i)) \)
4. **if** \(y_i \neq t_i \) **then**
5. \(w = w + t_i \varphi(x_i) \)

Loop invariant: \(w \) is a weighted sum of training vectors:

\[
 w = \sum_i \alpha_i t_i \varphi(x_i) \implies w^T \phi(x) = \sum_i \alpha_i t_i \varphi(x_i)^T \phi(x)
\]

Repeat:

a) until convergence.
b) for a number of epochs \(E \).
Kernel Perceptron: Two Classes

1. define \(f(x) = \sum_i \alpha_i t_i \varphi(x_i)^T \varphi(x) = \sum_i \alpha_i t_i K(x_i, x) \)
2. initialize dual parameters \(\alpha_i = 0 \)
3. for \(i = 1 \ldots n \)
4. \(y_i = sgn f(x_i) \)
5. if \(y_i \neq t_i \) then
6. \(\alpha_i = \alpha_i + 1 \)

During testing: \(t = sgn f(x) \)
Kernel Perceptron: Two Classes

1. define \[f(x) = \sum_i \alpha_i \varphi(x_i)^T \varphi(x) = \sum_i \alpha_i K(x_i, x) \]
2. initialize dual parameters \(\alpha_i = 0 \)
3. for \(i = 1 \ldots n \)
4. \(y_i = sgn f(x_i) \)
5. if \(y_i \neq t_i \) then
6. \(\alpha_i = \alpha_i + t_i \)

During testing: \(t = sgn f(x) \)
The Perceptron Algorithm: K classes

1. **initialize** parameters $w = 0$
2. for $i = 1 \ldots n$

3. $c_j = \arg \max_{t \in T} w^T \varphi(x_i, t)$
4. if $c_j \neq t_i$ then
5. $w = w + \varphi(x_i, t_i) - \varphi(x_i, c_j)$

Repeat:
 a) until convergence.
 b) for a number of epochs E.

Loop invariant: w is a weighted sum of training vectors:

$$w = \sum_{i,j} \alpha_{ij} (\phi(x_i, t_i) - \phi(x_i, c_j))$$

$$\Rightarrow w^T \phi(x,t) = \sum_{i,j} \alpha_{ij} (\phi(x_i, t_i)^T \phi(x,t) - \phi(x_i, c_j)^T \phi(x,t))$$
Kernel Perceptron: K classes

1. define \(f(x,t) = \sum_{i,j} \alpha_{ij} (\phi(x_i, t_i)^T \phi(x,t) - \phi(x_i, c_j)^T \phi(x,t)) \)

2. initialize dual parameters \(\alpha_{ij} = 0 \)

3. for \(i = 1 \ldots n \)

4. \(c_j = \arg \max_{t \in T} f(x_i, t) \)

5. if \(y_i \neq t_i \) then

6. \(\alpha_{ij} = \alpha_{ij} + 1 \)

Repeat:

a) until convergence.

b) for a number of epochs E.

During testing:

\(t^* = \arg \max_{t \in T} f(x,t) \)
Kernel Perceptron: K classes

• Discriminant function:

\[f(x, t) = \sum_{i,j} \alpha_{i,j} (\phi(x, t_i)^T \phi(x, t) - \phi(x, c_j)^T \phi(x, t)) \]

\[= \sum_{i,j} \alpha_{ij} (K(x, t_i, x, t) - K(x, c_j, x, t)) \]

where:

\[K(x, t_i, x, t) = \varphi^T(x, t_i) \varphi(x, t) \]

\[K(x, y_i, x, t) = \phi^T(x, y_i) \phi(x, t) \]
The Perceptron vs. Boolean Functions

And

\[\varphi(x) = [1, x_1, x_2]^T \]
\[w = [w_0, w_1, w_2]^T \]

\[\Rightarrow w^T \varphi(x) = [w_1, w_2]^T [x_1, x_2] + w_0 \]

Or

Xor
Perceptron with Quadratic Kernel

- Discriminant function:
 \[f(x) = \sum \alpha_i t_i \varphi(x_i)^T \varphi(x) = \sum \alpha_i t_i K(x_i, x) \]

- Quadratic kernel:
 \[K(x, y) = (x^T y)^2 = (x_1 y_1 + x_2 y_2)^2 \]

\[\Rightarrow\] corresponding feature space \(\varphi(x) = ? \)

combinations of two atomic features
Perceptron with Quadratic Kernel

Linear kernel \(K(x, y) = x^T y \)

Quadratic kernel \(K(x, y) = (x^T y)^2 \)
Quadratic Kernels

- Circles, hyperbolas, and ellipses as separating surfaces:

\[
K(x, y) = (1 + x^T y)^2 = \varphi(x)^T \varphi(y)
\]

\[
\varphi(x) = [1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, \sqrt{2}x_1x_2, x_2^2]^T
\]
Quadratic Kernels

\[K(x, y) = (x^T y)^2 = \varphi(x)^T \varphi(y) \]
Explicit Features vs. Kernels

• Explicitly enumerating features can be prohibitive:
 – 1,000 basic features for x^Ty => 500,500 quadratic features for $(x^Ty)^2$
 – Much worse for higher order features.

• Solution:
 – Do not compute the feature vectors, compute kernels instead (i.e. compute dot products between implicit feature vectors).
 • $(x^Ty)^2$ takes 1001 multiplications.
 • $\varphi(x)^T \varphi(y)$ in feature space takes 500,500 multiplications.
Kernel Functions

• Definition:
 A function $k : X \times X \rightarrow \mathbb{R}$ is a kernel function if there exists a feature mapping $\varphi : X \rightarrow \mathbb{R}^n$ such that:
 $$k(x,y) = \varphi(x)^T \varphi(y)$$

• Theorem:
 $k : X \times X \rightarrow \mathbb{R}$ is a valid kernel \iff the Gram matrix K whose elements are given by $k(x_n,x_m)$ is positive semidefinite for all possible choices of the set $\{x_n\}$.
Kernel Examples

• **Linear kernel**: $K(x, y) = x^T y$

• **Quadratic kernel**: $K(x, y) = (c + x^T y)^2$
 – contains constant, linear terms and terms of order two ($c > 0$).

• **Polynomial kernel**: $K(x, y) = (c + x^T y)^M$
 – contains all terms up to degree M ($c > 0$).

• **Gaussian kernel**: $K(x, y) = \exp\left(-\frac{\|x - y\|^2}{2\sigma^2}\right)$
 – corresponding feature space has infinite dimensionality.
Kernels over Discrete Structures

• **Subsequence Kernels** [Lodhi et al., JMLR 2002]:
 - Σ is a finite alphabet (set of symbols).
 - $x, y \in \Sigma^*$ are two sequences of symbols with lengths $|x|$ and $|y|$.
 - $k(x, y)$ is defined as the number of common substrings of length n.
 - $k(x, y)$ can be computed in $O(n|x||y|)$ time complexity.

• **Tree Kernels** [Collins and Duffy, NIPS 2001]:
 - T_1 and T_2 are two trees with N_1 and N_2 nodes respectively.
 - $k(T_1, T_2)$ is defined as the number of common subtrees.
 - $k(T_1, T_2)$ can be computed in $O(N_1N_2)$ time complexity.
 - in practice, time is linear in the size of the trees.
Reading Assignment

• Chapter 6:
 – Section 6.1 on dual representations for linear regression models.
 – Section 6.2 on techniques for constructing new kernels.