Supervised Learning

- Task = learn a function \(f : X \rightarrow T \) that maps input instances \(x \in X \) to output targets \(t \in T \):
 - Classification:
 - The output \(t \in T \) is one of a finite set of discrete categories.
 - Regression:
 - The output \(t \in T \) is continuous, or has a continuous component.

- Supervision = set of training examples:
 \[(x_1, t_1), (x_2, t_2), \ldots, (x_n, t_n)\]
Three Parametric Approaches to Classification

1) **Discriminant Functions**: construct $f : X \rightarrow T$ that directly assigns a vector x to a specific class C_k.
 - Inference and decision combined into a single learning problem.
 - *Linear Discriminant*: the decision surface is a hyperplane in X:
 - Fisher ‘s Linear Discriminant
 - Perceptron
 - Support Vector Machines
Three Parametric Approaches to Classification

2) **Probabilistic Discriminative Models**: directly model the posterior class probabilities $p(C_k \mid x)$.
 - Inference and decision are separate.
 - Less data needed to estimate $p(C_k \mid x)$ than $p(x \mid C_k)$.
 - Can accommodate many overlapping features.
 - Logistic Regression
 - Conditional Random Fields
Three Parametric Approaches to Classification

3) Probabilistic Generative Models:
 - Model class-conditional $p(x \mid C_k)$ as well as the priors $p(C_k)$, then use Bayes’s theorem to find $p(C_k \mid x)$.
 • or model $p(x, C_k)$ directly, then marginalize to obtain the posterior probabilities $p(C_k \mid x)$.
 - Inference and decision are separate.
 - Can use $p(x)$ for outlier or novelty detection.
 - Need to model dependencies between features.
 • Naïve Bayes.
 • Hidden Markov Models.
Generative vs. Discriminative

Left-hand mode has no effect on posterior class probabilities.

Lecture 03
Linear Discriminant Functions: Two classes \((K = 2)\)

- Use a linear function of the input vector:
 \[
y(x) = w^T \varphi(x) + w_0
 \]
 - **weight vector**
 - **bias = - threshold**

- Decision:
 - \(x \in C_1\) if \(y(x) \geq 0\), otherwise \(x \in C_2\).
 - \(\Rightarrow\) decision boundary is hyperplane \(y(x) = 0\).

- Properties:
 - \(w\) is orthogonal to vectors lying within the decision surface.
 - \(w_0\) controls the location of the decision hyperplane.
Linear Discriminant Functions: Two Classes ($K = 2$)
Feature Scaling
Linear Discriminant Functions: Multiple Classes ($K > 2$)

1) Train K or $K-1$ *one-versus-the-rest* classifiers.
2) Train $K(K-1)/2$ *one-versus-one* classifiers.

3) Train K linear functions:
 \[y_k(x) = w_k^T \varphi(x) + w_{k0} \]

- **Decision:**
 \[x \in C_k \text{ if } y_k(x) > y_j(x), \text{ for all } j \neq k. \]
 \[\Rightarrow \text{decision boundary between classes } C_k \text{ and } C_j \text{ is hyperplane defined by } y_k(x) = y_j(x) \text{ i.e. } (w_k - w_j)^T \varphi(x) + (w_{k0} - w_{j0}) = 0 \]
 \[\Rightarrow \text{same geometrical properties as in binary case.} \]
Linear Discriminant Functions: Multiple Classes ($K > 2$)

4) More general ranking approach:

$$y(x) = \arg \max_{t \in T} w^T \varphi(x, t) \quad \text{where} \quad T = \{c_1, c_2, \ldots, c_K\}$$

- It subsumes the approach with K separate linear functions.
- Useful when T is very large (e.g. exponential in the size of input x), assuming inference can be done efficiently.
Linear Discriminant Functions: Two Classes ($K = 2$)

- What algorithms can be used to learn $y(x) = w^T \varphi(x) + w_0$?
 Assume a training dataset of $N = N_1 + N_2$ examples in C_1 and C_2.

 - Fisher’s Linear Discriminant
 - Perceptron:
 - Voted/Averaged Perceptron
 - Kernel Perceptron

 - Support Vector Machines:
 - Linear
 - Kernel
Fisher’s Linear Discriminant

• Discriminant function $y(x) = w^T x + w_0$ can be interpreted as follows:
 1. Project D-dimensional x down to one dimension $\Rightarrow w^T x$
 2. Use a threshold $-w_0$ to classify x \Rightarrow
 - $x \in C_1$, if $w^T x \geq -w_0$
 - $x \in C_2$, otherwise.

• Fisher’s idea:
 – Maximize the **between-class separation** of projected dataset.
 – Minimize the **within-class variance** of projected dataset.
Fisher’s Linear Discriminant

Line joining the class means vs. Line inferred with Fisher’s criterion.
1) Measure of the separation between the classes is the *between class variance*:

\[
\begin{align*}
\mathbf{m}_1 &= \frac{1}{N_1} \sum_{n \in C_1} \mathbf{x}_n \\
\mathbf{m}_2 &= \frac{1}{N_2} \sum_{n \in C_2} \mathbf{x}_n \\
\end{align*}
\]

\[
\mathbf{m}_2 - \mathbf{m}_1 = \mathbf{w}^T (\mathbf{m}_2 - \mathbf{m}_1) \quad \Rightarrow \quad (\mathbf{m}_2 - \mathbf{m}_1)^2
\]

Fisher’s Linear Discriminant
Fisher’s Linear Discriminant

2) Measure of the *within-class variance*:

\[
s_1^2 = \sum_{n \in C_1} (w^T x_n - m_1)^2
\]

\[
s_2^2 = \sum_{n \in C_2} (w^T x_n - m_2)^2
\]

\[s_1^2 + s_2^2\]
Fisher’s Linear Discriminant

- Maximize the between-class separation and minimize the within-class variance \(\Rightarrow \) Fisher’s criterion:
 \[
 w^* = \arg \max_w J(w), \text{ where } J(w) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2}
 \]

- The objective function can be rewritten as:
 \[
 J(w) = \frac{w^T S_B w}{w^T S_W w}
 \]

where
\[
S_B = (m_2 - m_1)(m_2 - m_1)^T
\]
\[
S_W = \sum_{n \in C_1} (x_n - m_1)(x_n - m_1)^T + \sum_{n \in C_2} (x_n - m_2)(x_n - m_2)^T
\]
Fisher’s Linear Discriminant

• Optimization formulation:

\[w^* = \arg \max_w J(w) = \arg \max_w \frac{w^T S_B w}{w^T S_W w} \]

• Solution:

\[\frac{\partial J(w)}{\partial w} = 0 \Rightarrow (w^T S_W w)S_B w = (w^T S_B w)S_W w \]

\[\Rightarrow S_B w = \frac{w^T S_B w}{w^T S_W w} S_W w \Rightarrow S_B w = \lambda S_W w \]

• If \(S_W \) is nonsingular:

\[\Rightarrow S_W^{-1} S_B w = \lambda w \]

Lecture 03
Fisher’s Linear Discriminant

• No need to solve the eigenvalue problem:
 \[S_B w = (m_2 - m_1)(m_2 - m_1)^T w \] is a vector in the direction \(m_2 - m_1 \)

• The norm of \(w \) is immaterial, only its direction is important.
 \[\Rightarrow \text{can take} \quad w = S_W^{-1}(m_2 - m_1) \]

• How to find \(w_0 \):
 – Assume \(p(w^T x | C_1) \) and \(p(w^T x | C_2) \) are Gaussians.
 – Estimate means and variances using maximum likelihood.
 – Use decision theory to find \(w_0 \) i.e. \(p(-w_0 | C_1) = p(-w_0 | C_2) \)
Reading Assignment

• Section 1.4 (The Curse of Dimensionality).
• Section 1.5 (Decision Theory).
• Section 4 (Linear Models for Classification):
 – 4.1.1 to 4.1.4.