Supervised Learning

- Task = learn a function \(y : X \rightarrow T \) that maps input instances \(x \in X \) to output targets \(t \in T \):
 - Classification:
 - The output \(t \in T \) is one of a finite set of discrete categories.
 - Regression:
 - The output \(t \in T \) is continuous, or has a continuous component.

- Supervision = set of training examples:
 \((x_1, t_1), (x_2, t_2), \ldots, (x_n, t_n)\)
Regression: Curve Fitting

- Training: examples \((x_1, t_1), (x_2, t_2), \ldots (x_n, t_n)\)
Regression: Curve Fitting

- Testing: for arbitrary (unseen) instance $x \in X$, compute target output $y(x) = t \in T$.
Polynomial Curve Fitting

\[y(x) = y(x, w) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j \]
Polynomial Curve Fitting

• Learning = finding the “right” parameters $\mathbf{w}^T = [w_0, w_1, \ldots, w_M]$

 - Find \mathbf{w} that minimizes an error function $E(\mathbf{w})$ which measures the misfit between $y(x_n, \mathbf{w})$ and t_n.

 - Expect that $y(x, \mathbf{w})$ performing well on training examples $x_n \Rightarrow y(x, \mathbf{w})$ will perform well on arbitrary test examples $x \in X$.

• Sum-of-Squares error function:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Inductive Learning Hypothesis

why squared?
Sum-of-Squares Error Function

• How do we find \(w^* \) that minimizes \(E(w) \)?
 \[
 w^* = \arg \min_w E(w)
 \]
Polynomial Curve Fitting

• \textit{Least Square} solution is found by solving a set of $M + 1$ linear equations:

\[
\sum_{j=0}^{M} A_{ij} w_j = T_i , \text{ where } A_{ij} = \sum_{n=1}^{N} x_n^{i+j}, \text{ and } T_i = \sum_{n=1}^{N} t_n x_n^i
\]

• \textit{Generalization} = how well the parameterized $y(x, w^*)$ performs on arbitrary (unseen) test instances $x \in X$.
 – Generalization performance depends on the value of M.

Lecture 01
0th Order Polynomial
1st Order Polynomial

[M = 1]
3rd Order Polynomial

\begin{align*}
M &= 3
\end{align*}
9th Order Polynomial

\[M = 9 \]
Polynomial Curve Fitting

- **Model Selection**: choosing the order M of the polynomial.
 - Best generalization obtained with $M = 3$.
 - $M = 9$ obtains poor generalization, even though it fits training examples perfectly:
 - But $M = 9$ polynomials subsume $M = 3$ polynomials!

- **Overfitting** = good performance on training examples, poor performance on test examples.
Overfitting

- Measure fit to training/testing examples using the Root-Mean-Square (RMS) error:
 \[E_{RMS} = \sqrt{2E(w^*) / N} \]
- Use 100 random test examples, generated in the same way as the training examples.
Over-fitting and Parameter Values

<table>
<thead>
<tr>
<th></th>
<th>$M = 0$</th>
<th>$M = 1$</th>
<th>$M = 3$</th>
<th>$M = 9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_0^*</td>
<td>0.19</td>
<td>0.82</td>
<td>0.31</td>
<td>0.35</td>
</tr>
<tr>
<td>w_1^*</td>
<td></td>
<td>-1.27</td>
<td>7.99</td>
<td>232.37</td>
</tr>
<tr>
<td>w_2^*</td>
<td></td>
<td></td>
<td>-25.43</td>
<td>-5321.83</td>
</tr>
<tr>
<td>w_3^*</td>
<td></td>
<td></td>
<td>17.37</td>
<td>48568.31</td>
</tr>
<tr>
<td>w_4^*</td>
<td></td>
<td></td>
<td></td>
<td>-231639.30</td>
</tr>
<tr>
<td>w_5^*</td>
<td></td>
<td></td>
<td></td>
<td>640042.26</td>
</tr>
<tr>
<td>w_6^*</td>
<td></td>
<td></td>
<td></td>
<td>-1061800.52</td>
</tr>
<tr>
<td>w_7^*</td>
<td></td>
<td></td>
<td></td>
<td>1042400.18</td>
</tr>
<tr>
<td>w_8^*</td>
<td></td>
<td></td>
<td></td>
<td>-557682.99</td>
</tr>
<tr>
<td>w_9^*</td>
<td></td>
<td></td>
<td></td>
<td>125201.43</td>
</tr>
</tbody>
</table>
Overfitting vs. Data Set Size

• More training data ⇒ less overfitting.
• What if we do not have more training data?
 – Use regularization.
 – Use a probabilistic model in a Bayesian setting.