Feature Selection

- Datasets with thousands of features are common:
 - text documents
 - gene expression data
- Processing thousands of features during training & testing can be computationally infeasible.
- Many irrelevant features can lead to overfitting.

=> select most relevant features in order to obtain faster, better and easier to understand learning models.
Feature Selection: Methods

- **Wrapper method:**
 - uses a classifier to assess features or feature subsets.

- **Filter method:**
 - ranks features or feature subsets independently of the classifier.

- **Univariate method:**
 - considers one feature at a time.

- **Multivariate method:**
 - considers subsets of features together.
The Wrapper Method

Greedy Forward Selection:

- F is the set of all features.
- $S \subseteq F$ is the subset of selected features.

1. Start with no features in $S = \{\}$
2. For each feature f in $F - S$, train model with $S + \{f\}$
3. Add to S the best performing feature(s).
4. Repeat from 2 until:
 - (a) performance does not improve, or
 - (b) performance good enough.
The Wrapper Method

Greedy Backward Elimination:

- F is the set of all features.
- $S \subseteq F$ is the subset of selected features.

1. Start with all features in $S = F$
2. For each feature in S, train model without that feature.
3. Remove from S feature corresponding to best model.
4. Repeat from 2 until:
 (a) performance does not improve, or
 (b) performance good enough.
The Wrapper Method

- **Forward**: Greedily add features one (more) at a time.

 "Efficiently Inducing Features of Conditional Random Fields"
 [McCallum, UAI’03]

- **Backward**: Greedily remove features one (more) at a time.

 "Multiclass cancer diagnosis using tumor gene expression signatures"
 [Ramaswamy et al., PNAS’01]

- **Combined**: Two steps forward, one step back.

- Train multiple times ⇒ can be very time consuming!

 - Alternative: use external criteria to decide feature relevance ⇒ the Filter Method.
Recursive Feature Elimination with SVM

[Guyon et al., ML’03]

- An instance of Greedy Backward Elimination.

1. Let \(F = \{1, 2, ..., K\} \) be the set of features.
2. Let \(S = [] \) be the ranked set of features.
3. Repeat until \(F - S \) is empty:
 I. Train weight vector \(\mathbf{w} \) using a linear SVM and \(F - S \).
 II. Find feature \(f \) in \(F - S \) with minimum \(|\mathbf{w}_f| \).
 III. Append \(f \) to \(S \).
4. Return \(S \).
The Filter Method

1. Rank all features using a measure of correlation with the label.
2. Select top k features to use in the model.

- Measures of correlation between feature X and label Y:
 - Mutual Information
 - Chi-square Statistic
 - Pearson Correlation Coefficient
 - Signal-to-Noise Ratio
 - T-test

nominal features & label
Mutual Information

- **Independence:**
 \[P(X, Y) = P(X)P(Y) \]

- **Measure of dependence:**
 \[
 MI(X, Y) = \sum_{x \in X} \sum_{y \in Y} p(X, Y) \log \frac{p(X, Y)}{p(X)p(Y)} \\
 = KL(p(X, Y) \parallel p(X)p(Y))
 \]
 - It is 0 when \(X \) and \(Y \) are independent.
 - It is maximum when \(X=Y \).
Mutual Information

- Problems:
 - Works only with nominal features & labels \Rightarrow discretization.
 - Biased toward high arity features \Rightarrow normalization.
 - May choose redundant features.
 - Features may become relevant in the context of other \Rightarrow use conditional MI [Fleuret, JMLR ‘04].

- Other measures:
 - Chi square (χ^2).
 - Log-likelihood Ratio (LLR).

- Comparison between MI, χ^2, and LLR in [Dunning, CL’98] “Accurate methods for the statistics of surprise and coincidence”
Chi Square (χ^2) Test of Independence

- N training examples (observations).
- X is a discrete feature with k possible values.
- Y is a label with l possible values.
- Create k-by-l contingency table with cells for every feature-label combination.

$O_{ij} > 5$
Chi Square (χ^2) Test of Independence

- O_{ij} is the observed count for $X=i$ & $Y=j$.
- E_{ij} is the expected value for $X=i$ & $Y=j$, assuming X,Y are independent.

$$E_{ij} = \frac{N_{X=i} \times N_{Y=j}}{N} = \frac{\left(\sum_{c=1}^{l} O_{ic} \right) \times \left(\sum_{r=1}^{k} O_{rj} \right)}{N}$$
Chi Square (χ^2) Test of Independence

\[X^2 = \sum_{i=1}^{k} \sum_{j=1}^{l} \frac{(O_{ij} - E_{ij})^2}{E_{ij}} \]

asymptotically distributed as χ^2 with $(k-1)(l-1)$ degrees of freedom if X,Y are independent.

Use X^2 test value to rank features X with respect to label Y.

Lecture 04
Pearson Correlation Coefficient

- Feature X and label Y are two random variables.
- Population correlation coefficient (linear dependence):
 \[
 \rho(X,Y) = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}
 \]
- Sample correlation coefficient:
 \[
 \rho(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}
 \]
- Values always between \([-1,+1]\]
 - when linearly dependent, +1, −1, when independent 0.
Pearson Correlation Coefficient
Signal-to-Noise Ratio (S2N)

- Feature X and label Y are two random variables:
 - Y is binary, $Y \in \{y_+, y_-\}$
- Let μ_+, σ_+ be the sample μ, σ of X for which $Y = y_+$.
- Let μ_-, σ_- be the sample μ, σ of X for which $Y = y_-$.

$$\mu(X, Y) = \frac{|\mu_+ - \mu_-|}{\sigma_+ + \sigma_-}$$

related to Fisher’s criterion
Ranking Features with the T-test

- Let m_+ be the number of samples in class y_+.
- Let m_- be the number of sample in class y_-.

$$T(X,Y) = \frac{|\mu_+ - \mu_-|}{\sqrt{\sigma_+^2/m_+ + \sigma_-^2/m_-}}$$