Machine Learning is Optimization

• Parametric ML involves minimizing an **objective function** $J(w)$:
 – Also called **cost function, loss function, or error function**.
 – Want to find $\hat{w} = \arg\min_w J(w)$

• Numerical optimization procedure:
 1. Start with some guess for w^0, set $\tau = 0$.
 2. **Update** w^τ to $w^{\tau+1}$ such that $J(w^{\tau+1}) \leq J(w^\tau)$.
 3. Increment $\tau = \tau + 1$.
 4. Repeat from 2 until J cannot be improved anymore.
Gradient-based Optimization

• How to update \(w^\tau \) to \(w^{\tau+1} \) such that \(J(w^{\tau+1}) \leq J(w^\tau) \)?

• Move \(w \) in the direction of **steepest descent**:

\[
w^{\tau+1} = w^\tau + \eta g
\]

- \(g \) is the direction of steepest descent, i.e. direction along which \(J \) decreases the most.
- \(\eta \) is the learning rate and controls the magnitude of the change.
Gradient-based Optimization

- Move \(\mathbf{w} \) in the direction of **steepest descent**:
 \[
 \mathbf{w}^{\tau+1} = \mathbf{w}^\tau + \eta \mathbf{g}
 \]

- What is the direction of steepest descent of \(J(\mathbf{w}) \) at \(\mathbf{w}^\tau \)?
 - The gradient \(\nabla J(\mathbf{w}) \) is in the direction of steepest ascent.
 - Set \(\mathbf{g} = -\nabla J(\mathbf{w}) \Rightarrow \) the **gradient descent** update:
 \[
 \mathbf{w}^{\tau+1} = \mathbf{w}^\tau - \eta \nabla J(\mathbf{w}^\tau)
 \]
Gradient Descent Algorithm

- Want to minimize a function \(J : \mathbb{R}^n \rightarrow \mathbb{R} \).
 - \(J \) is differentiable and convex.
 - Compute gradient of \(J \) i.e. *direction of steepest increase*:
 \[
 \nabla J(w) = \left[\frac{\partial J}{\partial w_1}, \frac{\partial J}{\partial w_2}, \ldots, \frac{\partial J}{\partial w_n} \right]
 \]

1. Set learning rate \(\eta = 0.001 \) (or other small value).
2. Start with some guess for \(w^0 \), set \(\tau = 0 \).
3. Repeat for epochs \(E \) or until \(J \) does not improve:
4. \(\tau = \tau + 1 \).
5. \(w^{\tau+1} = w^\tau - \eta \nabla J(w^\tau) \)
Gradient Descent: Large Updates
Gradient Descent: Small Updates

Cost

Learning step

Minimum

Random initial value

θ

https://www.safaribooksonline.com/library/view/hands-on-machine-learning
The Learning Rate

1. Set **learning rate** $\eta = 0.001$ (or other small value).
2. Start with some guess for w^0, set $\tau = 0$.
3. Repeat for epochs E or until J does not improve:
 4. $\tau = \tau + 1$.
 5. $w^{\tau+1} = w^\tau - \eta \nabla J(w^\tau)$

How big should the **learning rate be?**
 - If learning rate too small => slow convergence.
 - If learning rate too big => oscillating behavior => may not even converge.
Learning Rate too Small
Learning Rate too Large
The Learning Rate

• How big should the learning rate be?
 – If learning rate too big => oscillating behavior.
 – If learning rate too small => hinders convergence.

○ Use line search (backtracking line search, conjugate gradient, …).
○ Use second order methods (Newton’s method, L-BFGS, …).
 • Requires computing or estimating the Hessian.

○ Use a simple learning rate annealing schedule:
 – Start with a relatively large value for the learning rate.
 – Decrease the learning rate as a function of the number of epochs or as a function of the improvement in the objective.

○ Use adaptive learning rates:
 • Adagrad, Adadelta, RMSProp, Adam.
Gradient Descent: Nonconvex Objective

- Cost
 - Local minimum
 - Global minimum
 - Saddle point
 - Plateau
Convex Multivariate Objective
Gradient Step and Contour Lines
Gradient Descent: Nonconvex Objectives
Gradient Descent & Plateaus
Gradient Descent & Saddle Points
Gradient Descent & Ravines
Gradient Descent & Ravines

- **Ravines** are areas where the surface curves much more steeply in one dimension than another.
 - Common around local optima.
 - GD oscillates across the slopes of the ravines, making slow progress towards the local optimum along the bottom.

- Use **momentum** to help accelerate GD in the relevant directions and dampen oscillations:
 - Add a fraction of the past **update vector** to the current update vector.
 - The momentum term increases for dimensions whose previous gradients point in the same direction.
 - It reduces updates for dimensions whose gradients change sign.
 - Also reduces the risk of getting stuck in local minima.
Gradient Descent & Momentum

Vanilla Gradient Descent:

\[v^{\tau+1} = \eta \nabla J(w^{\tau}) \]
\[w^{\tau+1} = w^{\tau} - v^{\tau+1} \]

Gradient Descent w/ Momentum:

\[v^{\tau+1} = \gamma v^{\tau} + \eta \nabla J(w^{\tau}) \]
\[w^{\tau+1} = w^{\tau} - v^{\tau+1} \]

\(\gamma \) is usually set to 0.9 or similar.
Momentum & Nesterov Accelerated Gradient

GD with Momentum:
\[
\begin{align*}
v^{\tau+1} &= \gamma v^{\tau} + \eta \nabla J(w^{\tau}) \\
w^{\tau+1} &= w^{\tau} - v^{\tau+1}
\end{align*}
\]

Nesterov Accelerated Gradient:
\[
\begin{align*}
v^{\tau+1} &= \gamma v^{\tau} + \eta \nabla J(w^{\tau} - \gamma v^{\tau}) \\
w^{\tau+1} &= w^{\tau} - v^{\tau+1}
\end{align*}
\]

By making an anticipatory update, NAGs prevents GD from going too fast => significant improvements when training RNNs.
Gradient Descent Optimization Algorithms

- **Momentum.**
- **Nesterov Accelerated Gradient (NAG).**
- Adaptive learning rates methods:
 - Idea is to perform larger updates for infrequent params and smaller updates for frequent params, by accumulating previous gradient values for each parameter.
 - **Adagrad.**
 - **Adadelta.**
 - **RMSProp.**
 - **Adaptive Moment Estimation (Adam)**
• Adagrad, RMSprop, Adadelta, and Adam are very similar algorithms that do well in similar circumstances.
 – Insofar, **Adam** might be the best overall choice.
Variants of Gradient Descent

\[w^{\tau + 1} = w^\tau - \eta \nabla J(w^\tau) \]

- Depending on how much data is used to compute the gradient at each step:
 - **Batch gradient descent**: Use all the training examples.
 - **Stochastic gradient descent** (SGD): Use one training example, update after each.
 - **Minibatch gradient descent**: Use a constant number of training examples (minibatch).
Batch Gradient Descent

- Sum-of-squares error:

\[J(w) = \frac{1}{2N} \sum_{n=1}^{N} (h_w(x^{(n)}) - t_n)^2 \]

\[w^{\tau+1} = w^{\tau} - \eta \nabla J(w^{\tau}) \]
Stochastic Gradient Descent

- Sum-of-squares error:

\[
J(w) = \frac{1}{2N} \sum_{n=1}^{N} (h_w(x^{(n)}) - t_n)^2 = \frac{1}{2N} \sum_{n=1}^{N} J(w^\tau, x^{(n)})
\]

\[
w^{\tau+1} = w^\tau - \eta \nabla J(w^\tau, x^{(n)})
\]

\[
w^{\tau+1} = w^\tau - \eta (h_w(x^{(n)}) - t_n) x^{(n)}
\]

- Update parameters \(w \) after each example, sequentially:

 \(\Rightarrow \) the least-mean-square (LMS) algorithm.
Batch GD vs. Stochastic GD

- Accuracy:
- Time complexity:
- Memory complexity:
- Online learning:
Batch GD vs. Stochastic GD
Pre-processing Features

- Features may have very different scales, e.g. $x_1 = \text{rooms}$ vs. $x_2 = \text{size in sq ft.}$
 - **Right (different scales):** GD goes first towards the bottom of the bowl, then slowly along an almost flat valley.
 - **Left (scaled features):** GD goes straight towards the minimum.

![Diagram showing different optimization paths for scaled and unscaled features](image)
Feature Scaling

• Scaling between $[0, 1]$ or $[-1, +1]$:
 – For each feature x_j, compute \min_j and \max_j over the training examples.
 – Scale $x_{(n)}^j$ as follows:

• Scaling to standard normal distribution:
 – For each feature x_j, compute sample μ_j and sample σ_j over the training examples.
 – Scale $x_{(n)}^j$ as follows:
Implementation: Gradient Checking

• Want to minimize $J(\theta)$, where θ is a scalar.

• Mathematical definition of derivative:

$$\frac{d}{d\theta}J(\theta) = \lim_{\varepsilon \to \infty} \frac{J(\theta + \varepsilon) - J(\theta - \varepsilon)}{2\varepsilon}$$

• Numerical approximation of derivative:

$$\frac{d}{d\theta}J(\theta) \approx \frac{J(\theta + \varepsilon) - J(\theta - \varepsilon)}{2\varepsilon} \quad \text{where } \varepsilon = 0.0001$$
Implementation: Gradient Checking

- If θ is a vector of parameters θ_i,
 - Compute numerical derivative with respect to each θ_i.
 - Aggregate all derivatives into numerical gradient $G_{\text{num}}(\theta)$.

- Compare numerical gradient $G_{\text{num}}(\theta)$ with implementation of gradient $G_{\text{imp}}(\theta)$:

 $$\frac{\|G_{\text{num}}(\theta) - G_{\text{imp}}(\theta)\|}{\|G_{\text{num}}(\theta) + G_{\text{imp}}(\theta)\|} \leq 10^{-6}$$
Gradient Descent vs. Normal Equations

- **Gradient Descent:**
 - Need to select learning rate η.
 - May need many iterations:
 - Can do *Early Stopping* on validation data for regularization.
 - Scalable when number of training examples N is large.

- **Normal Equations:**
 - No iterations \Rightarrow easy to code.
 - Computing $(X^TX)^{-1}$ has cubic time complexity \Rightarrow slow for large N.
 - X^TX may be singular:
 1. Redundant (linearly dependent) features.
 2. #features $>$ #examples \Rightarrow do *feature selection* or *regularization*.