(Unsupervised) Feature Learning +
(Supervised) Machine Learning
(Self Taught) Deep Learning

Lecture 03

Razvan C. Bunescu
School of Electrical Engineering and Computer Science
bunescu@ohio.edu
Principal Component Analysis (PCA)

- A technique widely used for:
 - dimensionality reduction.
 - data compression.
 - feature extraction.
 - data visualization.

- Two equivalent definitions of PCA:
 1) Project the data onto a lower dimensional space such that the variance of the projected data is \textit{maximized}.
 2) Project the data onto a lower dimensional space such that the mean squared distance between data points and their projections (average projection cost) is \textit{minimized}.
Principal Component Analysis (PCA)
Principal Component Analysis (PCA)
PCA (Maximum Variance)

• Let $X = \{x_n\}_{1 \leq n \leq N}$ be a set of observations:
 – Each $x_n \in \mathbb{R}^D$ (D is the dimensionality of x_n).

• Project X onto an M dimensional space ($M < D$) such that the variance of the projected X is maximized.
 – Minimum error formulation leads to the same solution [PRML 12.1.2].
 • shows how PCA can be used for compression.

• Work out solution for $M = 1$, then generalize to any $M < D$.
PCA (Maximum Variance, $M = 1$)

- The lower dimensional space is defined by a vector $\mathbf{u}_1 \in \mathbb{R}^D$.
 - Only direction is important \implies choose $\|\mathbf{u}_1\| = 1$.

- Each \mathbf{x}_n is projected onto a scalar $\mathbf{u}_1^T \mathbf{x}_n$

- The (sample) mean of the data is:
 \[
 \overline{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n
 \]

- The (sample) mean of the projected data is $\mathbf{u}_1^T \overline{\mathbf{x}}$
PCA (Maximum Variance, \(M = 1 \))

- The (sample) variance of the projected data:

\[
\frac{1}{N} \sum_{n=1}^{N} (\mathbf{u}_1^T \mathbf{x}_n - \mathbf{u}_1^T \bar{\mathbf{x}})^2 = \mathbf{u}_1^T \Sigma \mathbf{u}_1
\]

where \(\Sigma \) is the data covariance matrix:

\[
\Sigma = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \bar{\mathbf{x}})(\mathbf{x}_n - \bar{\mathbf{x}})^T
\]

- Optimization problem is:

\[
\text{minimize: } \quad \mathbf{u}_1^T \Sigma \mathbf{u}_1
\]

subject to:

\[
\mathbf{u}_1^T \mathbf{u}_1 = 1
\]
PCA (Maximum Variance, \(M = 1\))

- Lagrangian function:

\[
L_P(u_1, \lambda_1) = u_1^T \Sigma u_1 + \lambda_1 (1 - u_1^T u_1)
\]

where \(\lambda_1\) is the Lagrangian multiplier for constraint \(u_1^T u_1 = 1\)

- Solve:

\[
\frac{\partial L_p}{\partial u_1} = 0 \implies \Sigma u_1 = \lambda_1 u_1 \implies \begin{cases}
\text{\(u_1\) is an eigenvector of \(\Sigma\)} \\
\lambda_1 \text{ is an eigenvalue of } \Sigma
\end{cases}
\]

\[
\Rightarrow u_1^T \Sigma u_1 = \lambda_1 u_1^T u_1 = \lambda_1
\]

\[
\Rightarrow \lambda_1 \text{ is the largest eigenvalue of } \Sigma.
\]
PCA (Maximum Variance, $M = 1$)

• λ_1 is the largest eigenvalue of Σ.
• u_1 is the eigenvector corresponding to λ_1:
 – also called the first principal component.

• For $M < D$ dimensions:
 – $u_1 u_2 \ldots u_M$ are the eigenvectors corresponding to the largest eigenvalues $\lambda_1 \lambda_2 \ldots \lambda_M$ of Σ.
 – proof by induction.
PCA on Normalized Data

- Preprocess data $X = \{x^{(i)}\}_{1 \leq i \leq m}$ such that:
 - features have the same mean (0).
 - features have the same variance (1).

1. Let $\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$.
2. Replace each $x^{(i)}$ with $x^{(i)} - \mu$.
3. Let $\sigma_j^2 = \frac{1}{m} \sum_i (x_j^{(i)})^2$
4. Replace each $x_j^{(i)}$ with $x_j^{(i)} / \sigma_j$.
PCA on Natural Images

- **Stationarity**: the statistics in one part of the image should be the same as any other.
 - \Rightarrow no need for variance normalization.
 - \Rightarrow do mean normalization by subtracting from each image its mean intensity.

\[
\mu^{(i)} := \frac{1}{n} \sum_{j=1}^{n} x_j^{(i)}
\]

\[
x_j^{(i)} := x_j^{(i)} - \mu^{(i)}
\]
PCA on Normalized Data

- The covariance matrix is:
 \[
 \Sigma = \frac{1}{m} XX^T = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}(x^{(i)})^T
 \]
- The eigenvectors are:
 \[
 \Sigma u_j = \lambda_j u_j \quad \text{where} \quad \lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_D \quad \text{and} \quad u_j^T u_j = 1
 \]
- Equivalent with:
 \[
 \Sigma U = U \Lambda \\
 U = [u_1, u_2, \ldots, u_D] \quad \lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_D \quad \text{and} \quad U^T U = I \\
 \Lambda = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_D)
 \]
PCA on Normalized Data

• **U** is an orthogonal (rotation) matrix, i.e. $U^T U = I$.

• The full transformation (rotation) of $x^{(i)}$ through PCA is:

$$y^{(i)} = U^T x^{(i)}$$

$$\Rightarrow x^{(i)} = U y^{(i)}$$

• The k-dimensional projection of $x^{(i)}$ through PCA is:

$$\hat{y}^{(i)} = U_{1,k}^T x^{(i)} = [u_1, \ldots, u_k]^T x^{(i)}$$

$$\Rightarrow \hat{x}^{(i)} = U_{1,k} \hat{y}^{(i)}$$

• How many components k should be used?
How many components k should be used?

- Compute *percentage of variance retained* by $Y = \{ y^{(i)} \}$, for each value of k:

$$\hat{y}^{(i)} = [u_1, \ldots, u_k]^T x^{(i)}$$

$$\text{Var}(k) = \sum_{j=1}^{k} \text{Var} [\hat{y}_j] = \sum_{j=1}^{k} \text{Var} [u_j^T x]$$

$$= \sum_{j=1}^{k} \frac{1}{m} \sum_{i=1}^{m} (u_j^T x^{(i)} - u_j^T \bar{x})^2 = \sum_{j=1}^{k} \frac{1}{m} \sum_{i=1}^{m} (u_j^T x^{(i)})^2 = \sum_{j=1}^{k} \lambda_j$$

HW: Prove it is λ_j
How many components k should be used?

• Compute *percentage of variance retained* by $Y = \{y(i)\}$, for each value of k:

 – Variance retained:

 $\text{Var}(k) = \sum_{j=1}^{k} \lambda_j$

 – Total variance:

 $\text{Var}(D) = \sum_{j=1}^{D} \lambda_j$

 – Percentage of variance retained:

 $P(k) = \frac{\sum_{j=1}^{k} \lambda_j}{\sum_{j=1}^{D} \lambda_j}$
How many components k should be used?

- Compute *percentage of variance retained* by $Y = \{y^{(i)}\}$, for each value of k:

$$P(k) = \frac{\sum_{j=1}^{k} \lambda_j}{\sum_{j=1}^{D} \lambda_j}$$

- Choose smallest k as to retain 99% of variance:

$$\hat{k} = \arg\min_{1 \leq k \leq D} [P(k) \geq 0.99]$$
PCA on Normalized Data: $[x_1^{(i)}, x_2^{(i)}]^T$
Rotation through PCA: \[[u_1^T x^{(i)}, u_2^T x^{(i)}]^T \]
1-Dimensional PCA Projection: $[u_1^T x^{(i)}, 0]^T$
1-Dimensional PCA Approximation: $u_1 u_1^T x^{(i)}$
PCA as a Linear Auto-Encoder

- The full transformation (rotation) of $x^{(i)}$ through PCA is:
 \[y = U^T x \Rightarrow x = Uy \]

- The k-dimensional projection of $x^{(i)}$ through PCA is:
 \[\hat{y} = U_{1,k}^T x = [u_1, \ldots, u_k]^T x \Rightarrow \hat{x} = U_{1,k} \hat{y} = U_{1,k} U_{1,k}^T x \]

- The minimum error formulation of PCA:
 \[U_{1,k}^* = \arg \min_{U_{1,k}} \sum_{i=1}^{m} \| U_{1,k} U_{1,k}^T x^{(i)} - x^{(i)} \|^2 \]

A linear auto-encoder with tied weights!
PCA as a Linear Auto-Encoder

\[u_i = [w_{i1}^{(1)}, w_{i2}^{(1)}, w_{i3}^{(1)}, w_{i4}^{(1)}]^T \]

\[\hat{x}_i = [w_{1i}^{(2)}, w_{2i}^{(2)}, w_{3i}^{(2)}, w_{4i}^{(2)}]^T \]
PCA and Decorrelation

- The full transformation (rotation) of $x^{(i)}$ through PCA is:

 $$y^{(i)} = U^T x^{(i)} \Rightarrow Y = U^T X$$

- What is the covariance matrix of the rotated data Y?

 $$\frac{1}{m} Y Y^T = \frac{1}{m} (U^T X)(U^T X)^T = \frac{1}{m} U^T X X^T U$$

 $$= U^T \left(\frac{1}{m} X X^T \right) U = U^T \Sigma U = \Lambda$$

 $$= \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_D)$$

 \Rightarrow the features in y are **decorrelated**!
PCA Whitening (Sphering)

• The goal of **whitening** is to make the input *less redundant*, i.e. the learning algorithm sees a training input where:
 1. The features are **not correlated** with each other.
 2. The features all have the **same variance**.

1. PCA already results in uncorrelated features:
 \[y^{(i)} = U^T x^{(i)} \iff Y = U^T X \]
 \[\frac{1}{m} YY^T = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_D) \]

2. Transform to identity covariance (**PCA Whitening**):
 \[y_j^{(i)} = \frac{u_j^T x^{(i)}}{\sqrt{\lambda_j}} \iff y^{(i)} = \Lambda^{-1/2} U^T x^{(i)} \iff Y = \Lambda^{-1/2} U^T X \]
Rotation through PCA: \[[u_1^T x^{(i)}, u_2^T x^{(i)}]^T \]
PCA Whitening:
\[
\begin{bmatrix}
\frac{u_1^T x^{(i)}}{\sqrt{\lambda_1}} & \frac{u_2^T x^{(i)}}{\sqrt{\lambda_2}}
\end{bmatrix}^T
\]
ZCA Whitening (Sphering)

• **Observation**: If Y has identity covariance and R is an orthogonal matrix, then RY has identity covariance.

1. **PCA Whitening:**

 \[Y_{PCA} = \Lambda^{-\frac{1}{2}}U^TX \]

2. **ZCA Whitening:**

 \[Y_{ZCA} = UY_{PCA} = U\Lambda^{-\frac{1}{2}}U^TX \]

 *Out of all rotations, U makes Y_{ZCA} closest to original X.***
ZCA Whitening: $Y_{ZCA} = U \Lambda^{-1/2} U^T X$
Smoothing

• When eigenvalues λ_j are very close to 0, dividing by $\lambda_j^{-1/2}$ is numerically unstable.

• **Smoothing**: add a small ε to eigenvalues before scaling for PCA/ZCA whitening:

\[
y_j^{(i)} = \frac{u_j^T x^{(i)}}{\sqrt{\lambda_j + \varepsilon}} \quad \varepsilon \approx 10^{-5}
\]

• ZCA whitening is a rough model of how the biological eye (the retina) processes images (through retinal neurons).