Deep Learning: Backpropagation

Lecture 02

Razvan C. Bunescu
School of Electrical Engineering and Computer Science
bunescu@ohio.edu
Neuron Function

\[\sum w_i x_i \]

Algebraic interpretation:
- The output of the neuron is a linear combination of inputs from other neurons, rescaled by the synaptic weights.
 - weights \(w_i \) correspond to the synaptic weights (activating or inhibiting).
 - summation corresponds to combination of signals in the soma.
- It is often transformed through a monotonic activation function.

Lecture 02
Activation Functions

unit step $f(z) = \begin{cases}
0 & \text{if } z < 0 \\
1 & \text{if } z \geq 0
\end{cases}$

Perceptron

logistic $f(z) = \frac{1}{1 + e^{-z}}$

Logistic Regression

ReLU $f(z) = \begin{cases}
0 & \text{if } z < 0 \\
z & \text{if } z \geq 0
\end{cases}$

Rectified Linear Unit
ReLU and Generalizations

• It has become more common to use piecewise linear activation functions for hidden units:
 – **ReLU**: the rectifier activation $g(a) = \max\{0, a\}$.
 – **Absolute value ReLU**: $g(a) = |a|$.
 – **Maxout**: $g(a_1, \ldots, a_k) = \max\{a_1, \ldots, a_k\}$.
 • needs k weight vectors instead of 1.
 – **Leaky ReLU**: $g(a) = \max\{0, a\} + \alpha \min(0, a)$.

\Rightarrow the network computes a *piecewise linear function* (up to the output activation function).
ReLU vs. Sigmoid and Tanh

- Sigmoid and Tanh saturate for values not close to 0:
 - “kill” gradients, bad behavior for gradient-based learning.

- ReLU does not saturate for values > 0:
 - greatly accelerates learning, fast implementation.
 - fragile during training and can “die”, due to 0 gradient:
 - initialize all b’s to a small, positive value, e.g. 0.1.
ReLU vs. Softplus

- Softplus $g(a) = \ln(1+e^a)$ is a smooth version of the rectifier.
 - Saturates less than ReLU, yet ReLU still does better [Glorot, 2011].
Perceptron vs. Logistic vs. ReLU vs. Tanh

• **Logistic neuron:**

 – At inference time, same decision function as **perceptron**, for binary classification with equal misclassification costs (**prove it**):

 \[
 \hat{y}(x) = \begin{cases}
 1 & \text{if } w^T x > 0 \\
 0 & \text{otherwise}
 \end{cases}
 \]

 – **Perceptron** cannot represent the XOR function:

 • **Logistic neuron, ReLU, Tanh** have the same limitation.

• How can we use (logistic) **neurons** to achieve better representational power?
Universal Approximation Theorem

− Let σ be a nonconstant, bounded, and monotonically-increasing continuous function;
− Let I_m denote the m-dimensional unit hypercube $[0,1]^m$;
− Let $C(I_m)$ denote the space of continuous functions on I_m;

Theorem: Given any function $f \in C(I_m)$ and $\varepsilon > 0$, there exist an integer N and real constants $\alpha_i, b_i \in \mathbb{R}, w_i \in \mathbb{R}^m$, where $i = 1, ..., N$, such that:

$$|F(x) - f(x)| < \varepsilon, \quad \forall x \in I_m$$

where

$$F(x) = \sum_{i=1}^{N} \alpha_i \sigma(w_i^T x + b_i)$$

Lecture 02
Universal Approximation Theorem

\[F(x) = \sum_{i=1}^{N} \alpha_i \sigma(w_i^T x + b_i) \]

\[|F(x) - f(x)| < \varepsilon, \forall x \in I_m \]
Neural Network Model

- Put together many neurons in layers, such that the output of a neuron can be the input of another:

![Diagram of a neural network model]

input layer **hidden layer** **output layer**
- $n_l = 3$ is the number of layers.
 - L_1 is the input layer, L_3 is the output layer
- $(W, b) = (W^{(1)}, b^{(1)}, W^{(2)}, b^{(2)})$ are the parameters:
 - $W^{(l)}_{ij}$ is the weight of the connection between unit j in layer l and unit i in layer $l + 1$.
 - $b^{(l)}_i$ is the bias associated with unit i in layer $l + 1$.
- $a^{(l)}_i$ is the activation of unit i in layer l, e.g. $a^{(1)}_i = x_i$ and $a^{(3)}_1 = h_{W,b}(x)$.
Inference: Forward Propagation

- The activations in the hidden layer are:

 \[a_1^{(2)} = f(W_{11}^{(1)} x_1 + W_{12}^{(1)} x_2 + W_{13}^{(1)} x_3 + b_1^{(1)}) \]
 \[a_2^{(2)} = f(W_{21}^{(1)} x_1 + W_{22}^{(1)} x_2 + W_{23}^{(1)} x_3 + b_2^{(1)}) \]
 \[a_3^{(2)} = f(W_{31}^{(1)} x_1 + W_{32}^{(1)} x_2 + W_{33}^{(1)} x_3 + b_3^{(1)}) \]

- The activations in the output layer are:

 \[h_{W,b}(x) = a_1^{(3)} = f(W_{11}^{(2)} a_1^{(2)} + W_{12}^{(2)} a_2^{(2)} + W_{13}^{(2)} a_3^{(2)} + b_1^{(2)}) \]

- Compressed notation:

 \[a_i^{(l)} = f(z_i^{(l)}) \text{ where } \ z_i^{(2)} = \sum_{j=1}^{n} W_{ij}^{(1)} x_j + b_i^{(1)} \]
Forward Propagation

• Forward propagation (unrolled):

\[
\begin{align*}
 a_1^{(2)} &= f(W_{11}^{(1)} x_1 + W_{12}^{(1)} x_2 + W_{13}^{(1)} x_3 + b_1^{(1)}) \\
 a_2^{(2)} &= f(W_{21}^{(1)} x_1 + W_{22}^{(1)} x_2 + W_{23}^{(1)} x_3 + b_2^{(1)}) \\
 a_3^{(2)} &= f(W_{31}^{(1)} x_1 + W_{32}^{(1)} x_2 + W_{33}^{(1)} x_3 + b_3^{(1)}) \\
 h_{W,b}(x) &= a_1^{(3)} = f(W_{11}^{(2)} a_1^{(2)} + W_{12}^{(2)} a_2^{(2)} + W_{13}^{(2)} a_3^{(2)} + b_1^{(2)})
\end{align*}
\]

• Forward propagation (compressed):

• Element-wise application:

\[f(z) = [f(z_1), f(z_2), f(z_3)] \]
Forward Propagation

- Forward propagation (compressed):

\[z^{(2)} = W^{(1)} x + b^{(1)} \]
\[a^{(2)} = f(z^{(2)}) \]
\[z^{(3)} = W^{(2)} a^{(2)} + b^{(2)} \]
\[h_{W,b}(x) = a^{(3)} = f(z^{(3)}) \]

- Composed of two \textit{forward propagation steps}:

\[z^{(l+1)} = W^{(l)} a^{(l)} + b^{(l)} \]
\[a^{(l+1)} = f(z^{(l+1)}) \]
Multiple Hidden Units, Multiple Outputs

- Write down the forward propagation steps for:
Learning: Backpropagation

- Regularized sum of squares error:

 \[
 J(W, b, x, y) = \frac{1}{2} \| h_{W,b}(x) - y \|^2
 \]

 \[
 J(W, b) = \frac{1}{m} \sum_{k=1}^{m} J(W, b, x^{(k)}, y^{(k)}) + \frac{\lambda}{2} \sum_{l=1}^{n_l-1} \sum_{i=1}^{s_{l+1}} \sum_{j=1}^{s_l} (W_{ij}^{(l)})^2
 \]

- Gradient:

 \[
 \frac{\partial J(W, b)}{\partial W_{ij}^{(l)}} = \frac{1}{m} \sum_{k=1}^{m} \frac{\partial J(W, b, x^{(k)}, y^{(k)})}{\partial W_{ij}^{(l)}} + \lambda W_{ij}^{(l)}
 \]

 \[
 \frac{\partial J(W, b)}{\partial b_i^{(l)}} = \frac{1}{m} \sum_{k=1}^{m} \frac{\partial J(W, b, x^{(k)}, y^{(k)})}{\partial b_i^{(l)}}
 \]
Backpropagation

- Need to compute the gradient of the squared error with respect to a single training example \((x, y)\):

\[
J(W, b, x, y) = \frac{1}{2} \| h_{W,b}(x) - y \|^2 = \frac{1}{2} \| a^{(n_l)} - y \|^2
\]

\[
\frac{\partial J}{\partial W^{(l)}_{ij}} = ? \quad \frac{\partial J}{\partial b^{(l)}_i} = ?
\]
Univariate Chain Rule for Differentiation

- **Univariate Chain Rule:**
 \[f = f \circ g \circ h = f(g(h(x))) \]
 \[\frac{\partial f}{\partial x} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial h} \frac{\partial h}{\partial x} \]

- **Example:**
 \[f(g(x)) = 2g(x)^2 - 3g(x) + 1 \]
 \[g(x) = x^3 + 2x \]
Multivariate Chain Rule for Differentiation

- Multivariate Chain Rule:

\[f = f(g_1(x), g_2(x), ..., g_n(x)) \]

\[\frac{df}{dx} = \sum_{i=1}^{n} \frac{\partial f}{\partial g_i} \frac{\partial g_i}{dx} \]

- Example:

\[f(g_1(x), g_2(x)) = 2g_1(x)^2 - 3g_1(x)g_2(x) + 1 \]

\[g_1(x) = 3x \]

\[g_2(x) = x^2 + 2x \]
Backpropagation: $W_{ij}^{(l)}$

- J depends on $W_{ij}^{(l)}$ only through $a_i^{(l+1)}$, which depends on $W_{ij}^{(l)}$ only through $z_i^{(l+1)}$.

$$J(W, b, x, y) = \frac{1}{2} \|a^{(n_l)} - y\|^2$$

$$a_i^{(l+1)} = f(z_i^{(l+1)})$$

$$z_i^{(l+1)} = \sum_{j=1}^{s_l} W_{ij}^{(l)} a_j^{(l)} + b_i^{(l)}$$
Backpropagation: $b_i^{(l)}$

- J depends on $b_i^{(l)}$ only through $a_i^{(l+1)}$, which depends on $b_i^{(l)}$ only through $z_i^{(l+1)}$.

$$J(W, b, x, y) = \frac{1}{2} \left\| a^{(n_l)} - y \right\|^2$$

$$a_i^{(l+1)} = f(z_i^{(l+1)})$$

$$z_i^{(l+1)} = \sum_{j=1}^{s_l} W_{ij} a_j^{(l)} + b_i^{(l)}$$

Lecture 02
Backpropagation: $W_{ij}^{(l)}$ and $b_i^{(l)}$

\[\frac{\partial J}{\partial W_{ij}^{(l)}} = \frac{\partial J}{\partial a_i^{(l+1)}} \times \frac{\partial a_i^{(l+1)}}{\partial z_i^{(l+1)}} \times \frac{\partial z_i^{(l+1)}}{\partial W_{ij}^{(l)}} = a_j^{(l)} \delta_i^{(l+1)} \]

\[\frac{\partial J}{\partial b_i^{(l)}} = \frac{\partial J}{\partial a_i^{(l+1)}} \times \frac{\partial a_i^{(l+1)}}{\partial z_i^{(l+1)}} \times \frac{\partial z_i^{(l+1)}}{\partial b_i^{(l)}} = \delta_i^{(l+1)} \]

How to compute $\delta_i^{(l)}$ for all layers l?
Backpropagation: $\delta_i^{(l)}$

\[\delta_i^{(l)} = \frac{\partial J}{\partial a_i^{(l)}} \times \frac{\partial a_i^{(l)}}{\partial z_i^{(l)}} = \frac{\partial J}{\partial a_i^{(l)}} \times f'(z_i^{(l)}) \]

- J depends on $a_i^{(l)}$ only through $a_1^{(l+1)}, a_2^{(l+1)}, ...$
Backpropagation: \(\delta_i^{(l)} \)

- \(J \) depends on \(a_i^{(l)} \) only through \(a_1^{(l+1)}, a_2^{(l+1)}, \ldots \)

\[
\frac{\partial J}{\partial a_i^{(l)}} = \sum_{j=1}^{s_{l+1}} \frac{\partial J}{\partial a_j^{(l+1)}} \times \frac{\partial a_j^{(l+1)}}{\partial a_i^{(l)}} = \sum_{j=1}^{s_{l+1}} \frac{\partial J}{\partial a_j^{(l+1)}} \times \frac{\partial a_j^{(l+1)}}{\partial z_j^{(l+1)}} \times \frac{\partial z_j^{(l+1)}}{\partial a_i^{(l)}} \times \delta_j^{(l+1)} \times W_{ji}^{(l)}
\]

- Therefore, \(\delta_i^{(l)} \) can be computed as:

\[
\delta_i^{(l)} = \frac{\partial J}{\partial a_i^{(l)}} \times f'(z_i^{(l)}) = \left(\sum_{j=1}^{s_{l+1}} W_{ji}^{(l)} \delta_j^{(l+1)} \right) \times f'(z_i^{(l)})
\]
Backpropagation: $\delta_i^{(l)}$

- Start computing δ’s for the output layer:

$$
\delta_i^{(n_l)} = \frac{\partial J}{\partial a_i^{(n_l)}} \times \frac{\partial a_i^{(n_l)}}{\partial z_i^{(n_l)}} = \frac{\partial J}{\partial a_i^{(n_l)}} \times f'(z_i^{(n_l)})
$$

$$
J = \frac{1}{2}\|a^{(n_l)} - y\|^2 \implies \frac{\partial J}{\partial a_i^{(n_l)}} = \left(a_i^{(n_l)} - y_i \right)
$$

$$
\delta_i^{(n_l)} = \left(a_i^{(n_l)} - y_i \right) \times f'(z_i^{(n_l)})
$$
Backpropagation Algorithm

1. Feedforward pass on x to compute activations $a_i^{(l)}$

2. For each output unit i compute:

 $$\delta_i^{(n_l)} = (a_i^{(n_l)} - y_i) \times f'(z_i^{(n_l)})$$

3. For $l = n_{l-1}, n_{l-2}, n_{l-3}, ..., 2$ compute:

 $$\delta_i^{(l)} = \left(\sum_{j=1}^{s_{l+1}} W_{ji}^{(l)} \delta_j^{(l+1)} \right) \times f'(z_i^{(l)})$$

4. Compute the partial derivatives of the cost $J(W, b, x, y)$

 $$\frac{\partial J}{\partial W_{ij}^{(l)}} = a_j^{(l)} \delta_i^{(l+1)}$$
 $$\frac{\partial J}{\partial b_i^{(l)}} = \delta_i^{(l+1)}$$
Backpropagation Algorithm: Vectorization for 1 Example

1. Feedforward pass on \(x \) to compute activations \(a_i^{(l)} \)
2. For last layer compute:
 \[
 \delta^{(n_l)} = (a^{(n_l)} - y) \cdot f'(z^{(n_l)})
 \]
3. For \(l = n_l-1, n_l-2, n_l-3, \ldots, 2 \) compute:
 \[
 \delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)} \right) \cdot f'(z^{(l)})
 \]
4. Compute the partial derivatives of the cost \(J(W, b, x, y) \)
 \[
 \nabla_{W^{(l)}} J = \delta^{(l+1)} (a^{(l)})^T \quad \nabla_{b^{(l)}} J = \delta^{(l+1)}
 \]
Backpropagation Algorithm: Vectorization for Dataset of m Examples

1. Feedforward pass on X to compute activations $a_i^{(l)}$
2. For last layer compute:
 \[
 \delta^{(n_l)} = (a^{(n_l)} - y) \cdot f'(z^{(n_l)})
 \]
3. For $l = n_l-1, n_l-2, n_l-3, \ldots, 2$ compute:
 \[
 \delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)}\right) \cdot f'(z^{(l)})
 \]
4. Compute the partial derivatives of the cost $J(W, b, x, y)$
 \[
 \nabla_{W^{(l)}} J = \delta^{(l+1)} \left(a^{(l)}\right)^T / m \quad \nabla_{b^{(l)}} J = \delta^{(l+1)}.\text{col_avg}()
 \]
Consider layer n_l to be the input to the softmax layer i.e. softmax output layer is n_l+1.

$$J(a^{(n_l+1)}, y)$$
Backpropagation: Softmax Regression

• Consider layer n_l to be the input to the softmax layer i.e. softmax output layer is n_l+1.

• Softmax weights stored in matrix $W^{(n_l)}$.

• K classes $\Rightarrow W^{(n_l)} = \begin{bmatrix} -w_1^T & - \\ -w_2^T & - \\ \vdots & \vdots \\ -w_K^T & - \end{bmatrix}$
Backpropagation Algorithm: Softmax (1)

1. Feedforward pass on \mathbf{x} to compute activations $\mathbf{a}^{(l)}$ for layers $l = 1, 2, \ldots, n_l$.

2. Compute softmax outputs $\mathbf{a}^{(n_l+1)}$ and objective $J(\mathbf{a}^{(n_l+1)}, \mathbf{y})$.

3. Let $\mathbf{y} = [\delta_1(y), \delta_2(y), \ldots, \delta_K(y)]^T$ be the one-hot vector representation for label y.

4. Compute gradient with respect to softmax weights:

$$
\frac{\partial J}{\partial \mathbf{W}^{(n_l)}} = (\mathbf{a}^{(n_l+1)} - \mathbf{y})\mathbf{a}^{(n_l)T}
$$
5. Compute gradient with respect to softmax inputs:
\[
\delta^{(n_l)} = (W^{(n_l)})^T (a^{(n_{l+1})} - y) \circ f'(z^{(n_l)})
\]
\[
\frac{\partial J}{\partial a^{(n_l)}}
\]

6. For \(l = n_l-1, n_l-2, n_l-3, ..., 2 \) compute:
\[
\delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)} \right) \cdot f'(z^{(l)})
\]

7. Compute the partial derivatives of the cost \(J(W, b, x, y) \)
\[
\nabla_{W^{(l)}} J = \delta^{(l+1)} (a^{(l)})^T \\
\nabla_{b^{(l)}} J = \delta^{(l+1)}
\]
Backpropagation Algorithm: Softmax for 1 Example

1. For softmax layer, compute:
 \[\delta^{(n_l+1)} = (a^{(n_l+1)} - y) \]

2. For \(l = n_l, n_l-2, n_l-3, \ldots, 2 \) compute:
 \[\delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)} \right) \cdot f'(z^{(l)}) \]

3. Compute the partial derivatives of the cost \(J(W,b,x,y) \)
 \[\nabla_{W^{(l)}} J = \delta^{(l+1)} (a^{(l)})^T \]
 \[\nabla_{b^{(l)}} J = \delta^{(l+1)} \]

one-hot label vector
Backpropagation Algorithm: Softmax for Dataset of \(m \) Examples

1. For softmax layer, compute:
\[
\delta^{(n_l+1)} = (a^{(n_l+1)} - y)
\]

2. For \(l = n_l, n_l-1, n_l-2, \ldots, 2 \) compute:
\[
\delta^{(l)} = \left(\left(W^{(l)} \right)^T \delta^{(l+1)} \right) \cdot f'(z^{(l)})
\]

3. Compute the partial derivatives of the cost \(J(W, b, x, y) \)
\[
\nabla_{W^{(l)}} J = \delta^{(l+1)} \left(a^{(l)} \right)^T / m \quad \nabla_{b^{(l)}} J = \delta^{(l+1)}.\text{col_avg}()
\]
Backpropagation: Logistic Regression