Deep Learning: Forward Propagation and Backpropagation

Lecture 02

Razvan C. Bunescu
School of Electrical Engineering and Computer Science

bunescu@ohio.edu
Neuron Function

- **Algebraic interpretation:**
 - The output of the neuron is a **linear combination** of inputs from other neurons, **rescaled by** the synaptic **weights**.
 - weights w_i correspond to the synaptic weights (activating or inhibiting).
 - summation corresponds to combination of signals in the soma.
 - It is often transformed through a monotonic **activation function**.
Activation Functions

unit step \(f(z) = \begin{cases}
0 & \text{if } z < 0 \\
1 & \text{if } z \geq 0
\end{cases} \)

logistic \(f(z) = \frac{1}{1 + e^{-z}} \)

ReLU \(f(z) = \begin{cases}
0 & \text{if } z < 0 \\
z & \text{if } z \geq 0
\end{cases} \)

Perceptron
Logistic Regression
Rectified Linear Unit
ReLU and Generalizations

- It has become more common to use piecewise linear activation functions for hidden units:
 - **ReLU**: the rectifier activation \(g(a) = \max\{0, a\} \).
 - **Absolute value ReLU**: \(g(a) = |a| \).
 - **Maxout**: \(g(a_1, ..., a_k) = \max\{a_1, ..., a_k\} \).
 - needs \(k \) weight vectors instead of 1.
 - **Leaky ReLU**: \(g(a) = \max\{0, a\} + \alpha \min(0, a) \).

\(\Rightarrow \) the network computes a *piecewise linear function* (up to the output activation function).
ReLU vs. Sigmoid and Tanh

- Sigmoid and Tanh saturate for values not close to 0:
 - “kill” gradients, bad behavior for gradient-based learning.
- ReLU does not saturate for values > 0:
 - greatly accelerates learning, fast implementation.
 - fragile during training and can “die”, due to 0 gradient:
 - initialize all b’s to a small, positive value, e.g. 0.1.
ReLU vs. Softplus

- Softplus $g(a) = \ln(1+e^a)$ is a smooth version of the rectifier.
 - Saturates less than ReLU, yet ReLU still does better [Glorot, 2011].
Perceptron vs. Logistic vs. ReLU vs. Tanh

• **Logistic neuron:**
 – At inference time, same decision function as perceptron, for binary classification with equal misclassification costs (prove it):
 \[
 \hat{i}(x) = \begin{cases}
 1 & \text{if } w^T x > 0 \\
 0 & \text{otherwise}
 \end{cases}
 \]
 – **Perceptron** cannot represent the XOR function:
 • Logistic neuron, ReLU, Tanh have the same limitation.

• How can we use (logistic) neurons to achieve better representational power?

Lecture 02
Universal Approximation Theorem

Let σ be a nonconstant, bounded, and monotonically-increasing continuous function;

Let I_m denote the m-dimensional unit hypercube $[0,1]^m$;

Let $C(I_m)$ denote the space of continuous functions on I_m;

Theorem: Given any function $f \in C(I_m)$ and $\varepsilon > 0$, there exist an integer N and real constants $\alpha_i, b_i \in \mathbb{R}, w_i \in \mathbb{R}^m$, where $i = 1, \ldots, N$, such that:

$$|F(x) - f(x)| < \varepsilon, \quad \forall x \in I_m$$

where

$$F(x) = \sum_{i=1}^{N} \alpha_i \sigma(w_i^T x + b_i)$$

Lecture 02
Universal Approximation Theorem

\[F(x) = \sum_{i=1}^{N} \alpha_i \sigma(w_i^T x + b_i) \]

\[|F(x) - f(x)| < \varepsilon, \forall x \in I_m \]
Neural Network Model

- Put together many neurons in layers, such that the output of a neuron can be the input of another:

![Diagram of a neural network model](image)

- **input layer**
- **hidden layer**
- **output layer**
- \(n_l = 3 \) is the number of layers.
 - \(L_1 \) is the input layer, \(L_3 \) is the output layer.
- \((W, b) = (W^{(1)}, b^{(1)}, W^{(2)}, b^{(2)})\) are the parameters:
 - \(W^{(l)}_{ij} \) is the weight of the connection between unit \(j \) in layer \(l \) and unit \(i \) in layer \(l + 1 \).
 - \(b^{(l)}_i \) is the bias associated unit unit \(i \) in layer \(l + 1 \).
- \(a^{(l)}_i \) is the activation of unit \(i \) in layer \(l \), e.g. \(a^{(1)}_i = x_i \) and \(a^{(3)}_1 = h_{W,b}(x) \).
Inference: Forward Propagation

- The activations in the hidden layer are:
 \[a_1^{(2)} = f(W_{11}^{(1)} x_1 + W_{12}^{(1)} x_2 + W_{13}^{(1)} x_3 + b_1^{(1)}) \]
 \[a_2^{(2)} = f(W_{21}^{(1)} x_1 + W_{22}^{(1)} x_2 + W_{23}^{(1)} x_3 + b_2^{(1)}) \]
 \[a_3^{(2)} = f(W_{31}^{(1)} x_1 + W_{32}^{(1)} x_2 + W_{33}^{(1)} x_3 + b_3^{(1)}) \]

- The activations in the output layer are:
 \[h_{W,b}(x) = a_1^{(3)} = f(W_{11}^{(2)} a_1^{(2)} + W_{12}^{(2)} a_2^{(2)} + W_{13}^{(2)} a_3^{(2)} + b_1^{(2)}) \]

- Compressed notation:
 \[a_i^{(l)} = f(z_i^{(l)}) \text{ where } z_i^{(2)} = \sum_{j=1}^{n} W_{ij}^{(1)} x_j + b_i^{(1)} \]
Forward Propagation

• Forward propagation (unrolled):

\[
\begin{align*}
 a_1^{(2)} &= f(W_{11}^{(1)} x_1 + W_{12}^{(1)} x_2 + W_{13}^{(1)} x_3 + b_1^{(1)}) \\
 a_2^{(2)} &= f(W_{21}^{(1)} x_1 + W_{22}^{(1)} x_2 + W_{23}^{(1)} x_3 + b_2^{(1)}) \\
 a_3^{(2)} &= f(W_{31}^{(1)} x_1 + W_{32}^{(1)} x_2 + W_{33}^{(1)} x_3 + b_3^{(1)}) \\
 h_{W,b}(x) &= a_1^{(3)} = f(W_{11}^{(2)} a_1^{(2)} + W_{12}^{(2)} a_2^{(2)} + W_{13}^{(2)} a_3^{(2)} + b_1^{(2)})
\end{align*}
\]

• Forward propagation (compressed):

\[
\begin{align*}
 z^{(2)} &= W^{(1)} x + b^{(1)} \\
 a^{(2)} &= f(z^{(2)}) \\
 z^{(3)} &= W^{(2)} a^{(2)} + b^{(2)} \\
 h_{W,b}(x) &= a^{(3)} = f(z^{(3)})
\end{align*}
\]

• Element-wise application:

\[f(z) = [f(z_1), f(z_2), f(z_3)]\]
Forward Propagation

- Forward propagation (compressed):

\[
\begin{align*}
 z^{(2)} &= W^{(1)}x + b^{(1)} \\
 a^{(2)} &= f(z^{(2)}) \\
 z^{(3)} &= W^{(2)}a^{(2)} + b^{(2)} \\
 h_{W,b}(x) &= a^{(3)} = f(z^{(3)})
\end{align*}
\]

- Composed of two *forward propagation steps*:

\[
\begin{align*}
 z^{(l+1)} &= W^{(l)}a^{(l)} + b^{(l)} \\
 a^{(l+1)} &= f(z^{(l+1)})
\end{align*}
\]
Multiple Hidden Units, Multiple Outputs

• Write down the forward propagation steps for:

```markdown
\[ h_{w,b}(x) \]
```
Learning: Backpropagation

- Regularized sum of squares error:

\[J(W, b, x, y) = \frac{1}{2} \| h_{W,b}(x) - y \|^2 \]

\[J(W, b) = \frac{1}{m} \sum_{k=1}^{m} J(W, b, x^{(k)}, y^{(k)}) + \frac{\lambda}{2} \sum_{l=1}^{n_f-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (W_{ij}^{(l)})^2 \]

- Gradient:

\[
\frac{\partial J(W, b)}{\partial W_{ij}^{(l)}} = \frac{1}{m} \sum_{k=1}^{m} \frac{\partial J(W, b, x^{(k)}, y^{(k)})}{\partial W_{ij}^{(l)}} + \lambda W_{ij}^{(l)} \\
\frac{\partial J(W, b)}{\partial b_i^{(l)}} = \frac{1}{m} \sum_{k=1}^{m} \frac{\partial J(W, b, x^{(k)}, y^{(k)})}{\partial b_i^{(l)}}
\]
Backpropagation

• Need to compute the gradient of the squared error with respect to a single training example \((x, y)\):

\[
J(W, b, x, y) = \frac{1}{2} \| h_{w,b}(x) - y \|^2 = \frac{1}{2} \| a^{(n_l)} - y \|^2
\]

\[
\frac{\partial J}{\partial W_{ij}^{(l)}} = ?
\]

\[
\frac{\partial J}{\partial b_i^{(l)}} = ?
\]
Univariate Chain Rule for Differentiation

• Univariate Chain Rule:

\[f = f \circ g \circ h = f(g(h(x))) \]

\[\frac{\partial f}{\partial x} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial h} \frac{\partial h}{\partial x} \]

• Example:

\[f(g(x)) = 2g(x)^2 - 3g(x) + 1 \]

\[g(x) = x^3 + 2x \]
Multivariate Chain Rule for Differentiation

- Multivariate Chain Rule:

\[f = f(g_1(x), g_2(x), \ldots, g_n(x)) \]

\[\frac{\partial f}{\partial x} = \sum_{i=1}^{n} \frac{\partial f}{\partial g_i} \frac{\partial g_i}{\partial x} \]

- Example:

\[f(g_1(x), g_2(x)) = 2g_1(x)^2 - 3g_1(x)g_2(x) + 1 \]

\[g_1(x) = 3x \]

\[g_2(x) = x^2 + 2x \]
Backpropagation: $W_{ij}^{(l)}$

- J depends on $W_{ij}^{(l)}$ only through $a_i^{(l+1)}$, which depends on $W_{ij}^{(l)}$ only through $z_i^{(l+1)}$.

\[
J(W, b, x, y) = \frac{1}{2} \left\| a_1^{(n_l)} - y \right\|^2
\]

\[
a_i^{(l+1)} = f(z_i^{(l+1)})
\]

\[
z_i^{(l+1)} = \sum_{j=1}^{s_l} W_{ij}^{(l)} a_j^{(l)} + b_i^{(l)}
\]
Backpropagation: \(b_i^{(l)} \)

- \(J \) depends on \(b_i^{(l)} \) only through \(a_i^{(l+1)} \), which depends on \(b_i^{(l)} \) only through \(z_i^{(l+1)} \).

\[
J(W, b, x, y) = \frac{1}{2} \|a^{(n_l)} - y\|^2
\]

\[
a_i^{(l+1)} = f(z_i^{(l+1)})
\]

\[
z_i^{(l+1)} = \sum_{j=1}^{s_l} W_{ij} a_j^{(l)} + b_i^{(l)}
\]