Lecture 11

Razvan C. Bunescu
School of Electrical Engineering and Computer Science
bunescu@ohio.edu
Functional vs. Imperative

• The design of the imperative languages is based directly on the *von Neumann architecture*:
 – Efficiency is the primary concern, rather than the suitability of the language for software development.
 – Heavy reliance on the underlying hardware ⇒ (unnecessary) restrictions on software development.

• The design of the functional languages is based on *mathematical functions*:
 – Offer a solid theoretical basis that is also closer to the user.
 – Relatively unconcerned with the architecture of the machines on which programs will run.
Mathematical Functions

- A mathematical function is a **mapping** of members of one set, called the **domain**, to another set, called the **range**:
 - The function \(\text{square}: \mathbb{Z} \rightarrow \mathbb{N}, \text{square}(x) = x \times x \)
 - \(\text{square} \) is the name of the function
 - \(x \) is an element in the domain \(\mathbb{Z} \)
 - \(\text{square}(x) \) is the corresponding element in the range \(\mathbb{N} \)
 - \(\text{square}(x) = x \times x \) defines the mapping.
 - The function \(\text{fact} : \mathbb{N} \rightarrow \mathbb{N} \)

 \[
 \text{fact}(x) = \begin{cases}
 1 & \text{if } x = 0 \\
 x \times \text{fact}(x-1) & \text{if } x > 0
 \end{cases}
 \]
Lambda Expressions

• A lambda expression specifies the parameters and the mapping of a nameless function in the following form:
 \(\lambda x. x \times x \) is the lambda expression for the mathematical function \(\text{square}(x) = x \times x \).
 \(\lambda x. \lambda y. x + y \) corresponds to \(\text{sum}(x, y) = x + y \).

• Lambda expressions are applied to parameters by placing the parameters after the expression:
 \((\lambda x. x \times x \times x)(2)\) evaluates to 8.
Functional Forms

• A higher-order function, or functional form, is one that:
 – either takes functions as parameters,
 – or yields a function as its result,
 – or both.

• Examples of functional forms:
 – functional composition.
 – apply-to-all.
Functional Composition

• **Mathematical Notation:**
 - **Form:** \(h \equiv f \circ g \)
 - **Meaning:** \(h(x) \equiv f(g(x)) \)
 - **Example:**
 - \(f(x) \equiv x + 2 \) and \(g(x) \equiv 3 \times x \).
 - \(h \equiv f \circ g \) is equivalent with \(h(x) \equiv (3 \times x) + 2 \)

• **Lambda expression:**

 \[
 \lambda x. \ x + 2 \\
 \lambda x. \ 3 \times x \\
 \lambda f. \ \lambda g. \ \lambda x. \ f (g \ x)
 \]
Apply-to-all

- A functional form that takes a single function as a parameter and yields a list of values obtained by applying the given function to each element of a list of parameters.

- Mathematical notation:
 - Form: α
 - Function: $h(x) \equiv x \times x$
 - Example: $\alpha(h, (2, 3, 4))$ yields $(4, 9, 16)$

- Lambda expression:
Functional Programming and Lambda Calculus

• Functional languages have a formal semantics derived from Lambda Calculus:
 – Defined by Alonzo Church in the mid 1930s as a computational theory of recursive functions.
 – The lambda calculus emphasizes expressions and functions, which naturally leads to a functional style of programming based on evaluation of expressions by function application to argument values.
Imperative Programming and Turing Machines

- **Imperative programming**: computation is performed through statements that change a program state.

- Modeled formally using **Turing Machines**:
 - Defined by Alan Turing in the mid 1930s.
 - Abstract machines that emphasize computation as a series of state transitions driven by symbols on an input tape, which leads naturally to an **imperative** style of programming based on assignment.
Functional Languages and Lambda Calculus

• Theorem (Church, Kleen, Turing):
 – Lambda Calculus and Turing Machines have the same computational power.

• Functional Languages have a denotational semantics based on lambda calculus:
 – the meaning of all syntactic programming constructs in the language is defined in terms of mathematical functions.
Scheme

• Designed and implemented by Steele and Sussman at MIT in 1975.

• Influenced syntactically and semantically by LISP and conceptually by Algol:
 – Lisp contributed the simple syntax, uniform representation of programs as lists and garbage collected heap allocated data.
 – Algol contributed lexical (static) scoping and block structure.
 – Lisp and Algol both defined recursive functions.
Scheme: Key Features

- Scheme is **statically scoped**:
 - uses the let, let* and letrec operators to define variable bindings within local scopes.
- Scheme has **dynamic or latent typing**:
 - types are associated with values at run-time.
 - a variable assumes the type of the value that is bound to at run-time.
- Scheme objects are **garbage-collected**:
 - run-time objects have potentially unlimited lifetime.
- Scheme functions are **first-class objects**:
 - functions can be created dynamically, stored in data structures, returned as results of expressions or other functions.
 - functions are defined as lists ⇒ can be treated as data.
Scheme: Key Features

• Scheme data objects (e.g. lists) are first-class objects:
 – they are all heap-allocated; can be returned as results from functions, and combined to form larger data structures.

• Scheme supports many different types:
 – numbers, characters, strings, symbols, and lists.
 – integers, real, complex, and arbitrary precision rational numbers.

• Scheme includes a large set of built-in functions for manipulation of lists and other data objects.

• Arguments to functions are always passed by value:
 – actual arguments are always evaluated before a function is called, whether or not the function needs the values (eager, or strict evaluation).
Syntax and Naming Conventions

- Scheme programs are made of:
 - keywords, variables, structured forms (e.g. lists), numbers, characters, strings, quoted vectors, quoted lists, whitespace, and comments.

- Identifiers (keywords, variables and symbols) are formed from the characters a-z, A-Z, 0-9, and ?!.+-*/<=>:$%^&_~
 - identifiers cannot start with 0-9,-,+.

- Predicate names end in the question mark symbol:
 - eq?, zero?, string=?

- Type predicates are the name of the type followed by a ?:
 - pair?, string?
Syntax and Naming Conventions

• Builtin character, string, and vector functions start with the name of the type:
 – string-append, …

• Functions that convert one type of object to another use the → symbol:
 – string→number

• Strings are formed using double quotes:
 – “Hello, world!”

• Numbers are just numbers:
 – 100, 3.14

• Some function names are overloaded (e.g., +, *, /).
Simple Expressions

- An expression in Scheme has the form $$(E_1 E_2 \ldots E_n)$$:
 - E_1 evaluates to an operator.
 - E_2 through E_n are evaluated as operands.

- Some examples using the Dr. Scheme interpreter:
 - $$(+ 1 2 3 4) \Rightarrow 10$$
 - $$(+ 1 (* 2 3) 4) \Rightarrow 11$$

- Scheme does **dynamic type checking** and **automatic type coercion**:
 - $$(+ 2.5 10) \Rightarrow 12.5$$
Simple Expressions

• Scheme uses inner-most evaluation:
 – arguments are evaluated first, then substituted as parameters to functions:

 (define (square x) (* x x))
 (square (+ 2 3)) ⇒ (square 5) ⇒ (* 5 5) ⇒ 25
 – once the subexpression (+2 3) is evaluated, the memory for this list can be garbage collected.

• Functions can also be defined using lambda expressions:

 (define square (lambda(x) (* x x)))
 (square 0.1) ⇒ 0.01
Top Level Bindings: define

- A Function for constructing functions define:
 1. To bind a symbol to an expression
e.g., (define pi 3.141593)
 Example use: (define two_pi (* 2 pi))
 2. To bind names to lambda expressions
e.g., (define (square x) (* x x))
 Example use: (square 5)

- The evaluation process for define is different! The first parameter is never evaluated. The second parameter is evaluated and bound to the first parameter.
Delayed Evaluation: quote

- quote takes one parameter; returns the parameter w/o evaluation.
 - `(quote (+ 1 2 3)) ⇒ (+ 1 2 3)
- The Scheme interpreter, named eval, always evaluates parameters to function applications before applying the function.
- Use quote to avoid parameter evaluation when it is not appropriate.
- Can be abbreviated with the apostrophe prefix operator:
 - `'(+ 1 2 3) ⇒ (+ 1 2 3)
 - (eval `'(+ 1 2 3)) ⇒ 6
 - (define sum123 `'(+ 1 2 3))
 - sum123 ⇒ (+ 1 2 3)
 - (eval sum123) ⇒ 6
 - `'x ⇒ x
Predicate Functions

• **Boolean values:**
 - \#T is true and \#F is false
 - sometimes () is used for false.

• **Relational predicates:**
 - =, >, <, >=, <=
 - implement <>

• **Numerical predicates:**
 - even?, odd?, zero?, negative?
Predicate Functions: Equality

1. Use eq? to compare two atoms:
 - \((\text{eq?} \ 'a \ 'a) \Rightarrow \#t\)
 - \((\text{eq?} \ 1.0 \ 1.0) \Rightarrow \#f\)

2. Use eqv? to compare two numbers or characters:
 - \((\text{eqv?} \ 1.0 \ 1.0) \Rightarrow \#t\)
 - \((\text{eqv?} \ "\text{hello}" \ "\text{hello}") \Rightarrow \#f\)

3. Use equal? to compare two objects for structural equality:
 - \((\text{equal?} \ "\text{hello}" \ "\text{hello}") \Rightarrow \#t\)
Built-in Logical Operators

- Logical operators:
 - `(and <e1> ... <en>)`
 - `(or <e1> ... <en>)`
 - `(not <e1>)`

- Parameter evaluation:
 - expressions are evaluated left to right:
 - short-circuit evaluation for `and` and `or`.

- Examples:
 - `(and (< x 10) (> x 5))`
 - `(define (<= x y) (or (< x y) (= x y)))`
 - `(define (<= x y) (not (> x y)))`
Control Flow: \texttt{if}

- The special form \texttt{if}:
 \begin{itemize}
 \item (if <predicate> <then_exp> <else_exp>)
 \item (if <predicate> <then_exp>)
 \end{itemize}

- Examples:
 \begin{itemize}
 \item (define (abs x)
 (if (< x 0)
 (- 0 x)
 x))
 \item ((if #f + *) 2 3)
 \end{itemize}
Multiple selection using the special form \texttt{cond} with the general form:

\begin{verbatim}
(\texttt{cond}
 (\texttt{predicate_1 expr \{expr\}})
 (\texttt{predicate_2 expr \{expr\}})
 \ldots
 (\texttt{predicate_k expr \{expr\}})
 (\texttt{else expr \{expr\}}))
\end{verbatim}

- Returns the value of the last expression in the first pair whose predicate evaluates to true
Control Flow: cond

- (define (abs x)
 (cond ((< x 0) (- 0 x))
 (else x)))

- (define (compare x y)
 (cond
 ((> x y) "x is greater than y")
 ((< x y) "y is greater than x")
 (else "x and y are equal")))
Factorial in Scheme

• (define (factorial x)
 (if (= x 0)
 1
 (* x (factorial (- x 1))))

• (define factorial (lambda (x)
 (if (= x 0)
 1
 (* x (factorial (- x 1)))))

Lecture 11
Lambda Expressions in Scheme

• `(lambda (<formal parameters>) <body>)`
 – When the lambda expression is evaluated, the environment in which it is evaluated is remembered.
 – When the procedure is called, the environment is augmented with bindings of formal params to actual params.
 – The expressions in the body are evaluated sequentially in order.

• Example:
 – `((lambda (x y) (* x y)) 2 3) ;; multiply 2 with 3`
Let Expressions

• Allow the definition of local variable bindings.
• General form:

\[
\text{(let((<name1> <expression1>)
 (<name2> <expression2>)
 \ldots
 (<namek> <expressionk>))
 \text{body})}
\]

– Evaluate all expressions;
– Bind the values to the names;
– Evaluate the body.
Let Expressions

- (define pi 3.14)
- (define (sum-of-pi-squared) (+ (square pi) (square pi)))
- (define (sum-of-pi-squared)
 (let ((pi-squared (square pi)))
 (+ pi-squared pi-squared)))

- Which is more efficient?
Let Expressions are Lambda Expressions

• “Syntactic sugar” for lambda expressions:

 \[
 ((\lambda (<\text{name1}> \ldots <\text{namek}>)

 \quad (<\text{body}>)

 \quad <\text{expr1}>

 \quad \ldots

 \quad <\text{exprk}>)
 \]

 – the result of the lambda expression is an anonymous procedure.
 – all the argument expressions are evaluated before the procedure is called (because of call-by-value semantics).
 – when the procedure is called, the variables for the formal parameters are bound to the values of the argument expressions and used in evaluating the body of the procedure.
Let* Expressions

- General form:

 \[
 \text{(let* ((<name1> <expression1>))} \\
 \text{ (<name2> <expression2>) } \\
 \text{ ... } \\
 \text{ (<namek> <expressionk>)) } \\
 \text{body} \\
 \text{)}
 \]

- The bindings are performed sequentially, from left to right.
- \(\Rightarrow\) earlier variable bindings apply to later variable bindings.
Let* Expressions are Lambda Expressions

• Let* examples:
 - `(define x 0)`
 - `x` ⇒ 0
 - `(let ((x 2) (y x)) y)` ⇒ 0
 - `(let* ((x 2) (y x)) y)` ⇒ 2

• Binding order is important ⇒ lexically nest the lambda expressions and the application to arguments:
 - `((lambda (x) ((lambda (y) y) x)) 2)` ⇒ 2
Lists in Scheme

• Almost everything in Scheme is a list:
 – the interpreter evaluates most lists as an operator followed by operands, and returns a result.
 • \((+ 1 2 3 4) \Rightarrow 10\)
 – list is evaluated as an expression, result is 10.
 • \'(+(1234) \Rightarrow (+1234)\)
 – result is a list of symbols
 – the empty list is denoted by \((\)\).

• Examples:
 – \'(colorless green ideas sleep furiously)\)
 – \'(green ideas ((sleep) furiously)) ()\)

Lecture 11
List Operations: \texttt{car} and \texttt{cdr}

- \texttt{car} takes a list parameter; returns the first element of that list e.g.

 \begin{align*}
 \text{(car ' (A B C)) & yields A} \\
 \text{(car ' ((A B) C D)) & yields (A B)}
 \end{align*}

- \texttt{cdr} takes a list parameter; returns the list after removing its first element e.g.

 \begin{align*}
 \text{(cdr ' (A B C)) & yields (B C)} \\
 \text{(cdr ' ((A B) C D)) & yields (C D)}
 \end{align*}
List Creation: **cons** and **list**

- **cons:**
 - takes two parameters:
 - the first can be either an atom or a list;
 - the second is a list;
 - returns a new list that includes the first parameter as its first element and the second parameter as the remainder.
 - \((\text{cons} \ 'A' \ '(B \ C)) \Rightarrow (A \ B \ C)\)

- **list:**
 - takes any number of parameters;
 - returns a list with the parameters as elements.
 - \((\text{list} \ 'a' \ 'b' \ 'c) \Rightarrow (a \ b \ c)\)
Pairs

• **cons** can also be used to create **pairs** or **improper lists**:

 > (cons 'a 'b) ⇒ (a . b)
 > (car '(a . b)) ⇒ a
 > (cdr '(a . b)) ⇒ b

• **When the second argument is a list, the result is a list:**

 > (cons 'a '(b)) ⇒ (a b)
 > (car '(a b)) ⇒ a
 > (cdr '(a b)) ⇒ (b)
Predicates on Lists

- **list?** takes one parameter; it returns \(\#t \) if the parameter is a list; otherwise \(\#f \)
 - \((\text{list? } '()) \Rightarrow \#t\)
 - \((\text{list? } (\text{cons} 'a '())) \Rightarrow \#t\)

- **null?** takes one parameter; it returns \(\#t \) if the parameter is the empty list; otherwise \(\#f \)
 - \((\text{null? } '()) \Rightarrow \#t\)

- **equal?**
 - \((\text{equal? } '(a b) (\text{list} 'a 'b)) \Rightarrow \#t\)
Scheme Functions: Example

- **member** takes as parameters an atom and a simple list:
 - returns #t if the atom is in the list;
 - returns #f otherwise.

```scheme
(define (member atom list)
  (cond
    ((null? list) #f)
    ((eq? atom (car list)) #t)
    (else (member atom (cdr list)))))
```
Scheme Functions: Example

- **equalsimp** takes two simple lists as parameters:
 - returns #\text{T} if the two simple lists are equal;
 - returns #\text{F} otherwise.

```
(define (equalsimp lis1 lis2)
  (cond
    ((null? lis1) (null? lis2))
    ((null? lis2) #F)
    ((eq? (car lis1) (car lis2))
     (equalsimp (cdr lis1)(cdr lis2)))
    (else #F)
  ))
```
Scheme Functions: Example

• **equal** takes two general lists as parameters:
 - returns #T if the two lists are equal;
 - returns #F otherwise.

```
(define (equal list1 list2)
  (cond
    ((not (list? list1))(eq? list1 list2))
    ((not (list? list2)) #F)
    ((null? list1) (null? list2))
    ((null? list2) #F)
    ((equal (car list1) (car list2))
      (equal (cdr list1) (cdr list2)))
    (else #F)))
```
Scheme Functions: Example

- **append** takes two lists as parameters:
 - returns the first parameter list with the elements of the second parameter list appended at the end.

```
(define (append list1 list2)
  (cond
    ((null? list1) list2)
    (else (cons (car list1)
                 (append (cdr list1) list2)))))
```
Functional Forms in Scheme

• Functional Composition:
 - \((\text{cdr} \ (\text{cdr} \ '(A \ B \ C))) \Rightarrow (C)\)
 - HW: define a function that is the composition of \(\text{cdr}\) with \(\text{cdr}\).

• Apply-to-All:
 - one form in Scheme is \(\text{map}\), which applies a given function to all elements of a given list.

 \[
 \text{(define (map fun lis)}
 \text{\ (cond}
 \text{\ ((null? lis) (}}
 \text{\ (else (cons (fun (car lis)})
 \text{\ (map fun (cdr lis))))})
 \text{))}
 \]
Procedures That Return Procedures

> (define (make-adder (num)
 (lambda (x)
 (+ x num)))

> ((make-adder 10) 9) ⇒ ?

> ((lambda (x) (+ x 10)) 9) ⇒ ?
Functions that build Scheme code

• It is possible in Scheme to define a function that builds Scheme code and requests its interpretation.

• This is possible because the interpreter is a user-available function, `eval`.
Functions that build Scheme code

• Building a function that adds a list of numbers:

  ```scheme
  (define (adder lis)
    (cond
      ((null? lis) 0)
      (else (eval (cons '+ lis)))))
  ```

• The parameter is a list of numbers to be added:
 - `adder` inserts a `+` operator and evaluates the resulting list.
 - Use `cons` to insert the atom `+` into the list of numbers.
 - Be sure that `+` is quoted to prevent evaluation.
 - Submit the new list to `eval` for evaluation.
A doomed attempt to define the infinite list of integers:

```scheme
> (define ints
  (lambda (n)
    (cons n (ints (+ n 1))))))

> (define integers (ints 1))
```
Conceptually Infinite Lists in Scheme

- **Delayed Evaluation**: delay the creation of remaining integers until needed.

  ```scheme
  > (define ints
    (lambda (n)
      (cons n (lambda () (ints (+ n 1)))))
  
  > (define integers (ints 1))
  > integers ⇒ (1 . #<procedure>)
  ```

- How do we access elements in the list?
Conceptually Infinite Lists in Scheme

• **Head** – can get the head with car:
 > (define head car)
 > (head integers) ⇒ Value: 1

• **Tail** – must force the evaluation of the tail:
 > (define tail
 (lambda (list)
 ((cdr list))))
 > (tail integers) ⇒ (2 . #<procedure>)
 > (head (tail (tail integers))) ⇒ ?
Conceptually Infinite Lists in Scheme

• **Element** – get the n-th integer:

```scheme
> (define element
    (lambda (n list)
        (if (= n 1)
            (head list)
            (element (- n 1) (tail list))))))
> (element 6 integers) ⇒ 6
> (element 6 (tail integers)) ⇒ ?
```
Conceptually Infinite Lists in Scheme

- **Take** – get the first n integers:

  ```scheme
  > (define take
    (lambda (n list)
      (if (= n 0)
          '()
          (cons (head list)
                (take (- n 1) (tail list))))))
  
  > (take 5 integers) ⇒ (1 2 3 4 5)
  > (take 3 (tail integers)) ⇒ ?
  ```
The Fibonacci Numbers

• The Fibonacci numbers as a conceptually infinite list:

> (define fibs
 (lambda (a b)
 (cons a (lambda () (fibs b (+ a b))))))

> (define fibonacci (fibs 1 1))

> (take 10 fibonacci)
⇒ (1 1 2 3 5 8 13 21 34 55)

> (element 10 (tail fibonacci)) ⇒ ?
The Sum of Two Infinite Lists

> (define sum
 (lambda (list1 list2)
 (cons (+ (head list1) (head list2))
 (lambda ()
 (sum (tail list1)
 (tail list2))))))

> (take 10 (sum integers integers))
⇒ (2 4 6 8 10 12 14 16 18 20)

> (take 5 (sum integers fibonacci))
⇒ ?
The Sum of Two Infinite Lists

• What does the following list correspond to?

\[
\text{> (define \ foo}
\]
\[
\hspace{1em} (\text{cons 1}
\]
\[
\hspace{2em} (\lambda ()
\]
\[
\hspace{3em} (\text{cons 1}
\]
\[
\hspace{4em} (\lambda ()
\]
\[
\hspace{5em} (\text{sum \ foo (tail \ foo)))))))))
\]

\[
\text{> (take 10 \ foo) ⇒ ?}
\]
Reading Assignment

• Chapter 10 from the textbook (10.1, 10.2, 10.3, 10.5, 10.7):
 – ignore imperative features (e.g. assignment, iteration).

• Chapters 1 & 2 from the Scheme programming book at http://www.scheme.com/tspl3/
 – ignore imperative features (e.g. assignment, iteration).

• DrScheme is installed on the prime machines (p1 & p2).
 – you can also install it on your Win/Linux/Mac machine by downloading it from racket-lang.org.

• Familiarize yourself with the Scheme interpreter by typing in examples from the textbook or lecture notes.
 – set the language to “Standard (R6RS)”.