
Verified Perceptron Convergence Theorem

Charlie Murphy
Princeton University, USA
tcm3@cs.princeton.edu

Patrick Gray Gordon Stewart
Ohio University, USA

pg219709@ohio.edu/gstewart@ohio.edu

Abstract
Frank Rosenblatt invented the perceptron algorithm in 1957 as
part of an early attempt to build “brain models”, artificial neural
networks. In this paper, we apply tools from symbolic logic such as
dependent type theory as implemented in Coq to build, and prove
convergence of, one-layer perceptrons (specifically, we show that our
Coq implementation converges to a binary classifier when trained
on linearly separable datasets).

Our perceptron and proof are extensible, which we demonstrate
by adapting our convergence proof to the averaged perceptron, a
common variant of the basic perceptron algorithm. We perform
experiments to evaluate the performance of our Coq perceptron vs.
an arbitrary-precision C++ implementation and against a hybrid
implementation in which separators learned in C++ are certified in
Coq. We find that by carefully optimizing the extraction of our
Coq perceptron, we can meet – and occasionally exceed – the
performance of the arbitrary-precision C++ implementation. Our
hybrid Coq certifier demonstrates an architecture for building high-
assurance machine-learning systems that reuse existing codebases.

CCS Concepts •Software and its engineering→ Software ver-
ification

Keywords interactive theorem proving, perceptron, linear classifi-
cation, convergence

1. Introduction
Frank Rosenblatt developed the perceptron in 1957 (Rosenblatt
1957) as part of a broader program to “explain the psychological
functioning of a brain in terms of known laws of physics and
mathematics. . . .” (Rosenblatt 1962, p. 3). To again quote (Rosenblatt
1962):

A perceptron is first and foremost a brain model, not an
invention for pattern recognition. . . . its utility is in enabling
us to determine the physical conditions for the emergence of
various psychological properties.

The classic story is that Minsky and Papert’s book Perceptrons (Min-
sky and Papert 1969) put a damper on initial enthusiasm for early
neural network models such as Rosenblatt’s by proving, for example,
that one-layer perceptrons were incapable of learning certain simple
boolean functions. But as Minsky and Papert themselves put it in

the prologue to the 1988 edition of their book, their early negative
results were only part of the story:

Our version [of the history] is that the progress [on learning
in network machines] had already come to a virtual halt
because of the lack of adequate basic theories, and the lessons
in this book provided the field with new momentum. . . .

Minsky and Papert go on to argue that the “symbolist” paradigm
they advocated in those early years of artificial intelligence in the
1960s and 70s laid the groundwork for new ways of representing
knowledge – that “connectionism” as embodied by the early network
models of Rosenblatt and others (and even of Minsky himself1)
was foundering not because Perceptrons drove researchers away,
but because the early connectionist work lacked firm theoretical
foundation.

In this paper, we step back from the historical debate on con-
nectionism vs. symbolism to consider the perceptron algorithm in a
fresh light: the language of dependent type theory as implemented
in Coq (The Coq Development Team 2016). Our work is both new
proof engineering, in the sense that we apply interactive theorem
proving technology to an understudied problem space (convergence
proofs for learning algorithms), but also reformulation of an existing
body of knowledge, in the hope that our work increases the profile
of classic machine-learning algorithms like the perceptron among
programming languages researchers.

While the single-layer perceptron we formalize and for which
we mechanically prove convergence bounds in this paper is less
sophisticated than more modern machine learning methods – SVM
or deep neural networks trained via backpropagation, for example –
it’s nevertheless a useful algorithm, especially in its extensions to the
averaged perceptron, which we have also implemented and proved
convergent (Section 4.2), or to MIRA (Crammer and Singer 2003).
By formalizing and proving perceptron convergence, we demon-
strate a proof-of-concept architecture, using classic programming
languages techniques like proof by refinement, by which further
machine-learning algorithms with sufficiently developed metatheory
can be implemented and verified. The hybrid certifier we describe
in Section 5 additionally shows that high assurance is possible with-
out sacrificing performance, and even re-using existing (potentially
previously optimized) implementations.

Toward these ends, this paper makes the following specific
contributions.

• We implement perceptron and averaged perceptron in Coq.
• We prove that our Coq perceptron implementations converge

as long as their training data are linearly separable. Our proofs
are constructive in two senses: First, we use vanilla Coq with
no axioms. Second, under the assumption that some particular
separating hyperplane is known, our termination proof calcu-

1 Cf. page ix of the 1988 edition of Minsky and Papert’s book.

lates explicit bounds on the number of iterations required for
perceptron to converge.

• We implement a hybrid certifier architecture, in which a C++
perceptron oracle is used to generate separating hyperplanes
which are then certified by a Coq validator.

• Our Coq perceptron is executable and reasonably efficient. We
evaluate (Section 7) its performance, when extracted to Haskell,
on a variety of real and randomly generated datasets against
both a baseline C++ implementation using arbitrary-precision
rational numbers and against the hybrid certifier architecture
supplied with a floating-point C++ oracle. When extraction is
optimized (Section 6), the performance of our Coq perceptron
is comparable to – and sometimes better than – that of the C++
arbitrary-precision rational implementation.

In support of these specific contributions, we first describe the
key ideas underlying the perceptron algorithm (Section 2) and
its convergence proof (Section 3). In Sections 4 and 5, we report
on our Coq implementation and convergence proof, and on the
hybrid certifier architecture. Sections 6 and 7 describe our extraction
procedure and present the results of our performance comparison
experiments. Sections 8 and 9 put our work in this paper in its
broader research context with respect to the interactive theorem
proving literature. The code and Coq proofs we describe are open
source under a permissive license and are available online.2

Limitations and Possible Extensions
Although our Coq perceptron implementation is verified convergent
(Section 4) and can be used to build classifiers for real datasets
(Section 7.1), it is still only a proof-of-concept in a number of
important respects. For example:

Single- vs. Multi-Layer. Our convergence proof applies only
to single-node perceptrons. Multi-node (multi-layer) perceptrons
are generally trained using backpropagation. When a multi-layer
perceptron consists only of linear perceptron units (i.e., every
activation function other than the final output threshold is the
identity function), it has equivalent expressive power to a single-
node perceptron. We suspect that parts of our implementation and
proofs could be expanded or re-used to prove termination in this
(admittedly somewhat limited) case.

Linear vs. Logistic. Perceptrons equipped with sigmoid rather
than linear threshold output functions essentially perform logistic
regression. Such perceptrons aren’t guaranteed to converge (Chang
and Abdel-Ghaffar 1992), which is why general multi-layer percep-
trons with sigmoid threshold functions may also fail to converge.
Our convergence proof (Section 4) does not generalize to this case.

Partial vs. Total. Our perceptron is guaranteed to terminate only
on linearly separable datasets (it’s a partial function with guaranteed
termination behavior for a subset of its input space). As we discuss
in Section 6, one direct extension is to construct and prove correct
a decision procedure for linearly separability (using, for example,
a convex hull algorithm). We could then compose this decision
procedure with our perceptron to yield a total function over all
training sets, returning a proof of inseparability in cases where our
current perceptron just infinite loops.

2. Perceptron
The perceptron is a supervised learning algorithm that computes
a decision boundary between two classes of labeled data points.
There may be many such decision boundaries; the goal is to learn
a classifier that generalizes well to unseen data. The data points
are represented as feature vectors x ∈ Rn, where each feature is a

2 https://github.com/tm507211/CoqPerceptron

for E epochs or until convergence do
for (x, l) ∈ T do

y = sign(wTx)
if y 6= l then

w = w + xl

Figure 1: Perceptron algorithm

Figure 2: AC Bound

numerical delineation of an attribute possibly correlated with the
given class label l ∈ {−1,+1}. A learned weight model w ∈ Rn

and a bias parameter w0 define, respectively, the orientation and
location of the boundary.

To predict class labels y, the perceptron projects a given feature
vector x onto w and clamps the result as either positive or negative:

y = sign(wTx + w0) =

{
1, if wTx + w0 ≥ 0
−1, if wTx + w0 < 0

(1)

The perceptron learns the decision boundary by minimizing the
following error function, known as the perceptron criterion:

E(w) = −
∑
x∈M

(wTx + w0)l (2)

M is the set of all x misclassified by w. Since x is misclassified,
the projection of x onto w will have sign opposite x’s true label
l. Multiplying by the correct label l therefore results in a negative
value, forcing the overall error E(w) positive.

To actually minimize E(w), perceptron performs stochastic
gradient descent:

wk = w(k−1) −∇wE(w) = w(k−1) + xklk (3)

The weight vector at step k equals w(k−1) plus the kth misclassified
feature vector xk multiplied by its class label lk. The overall
effect of this update is to draw the decision boundary closer to
the misclassified vector xk, with the hope that wk is now nearer a
decision boundary for all the xi.

In the pseudocode of Figure 1, T is the labeled training data. One
iteration of stochastic gradient descent over T is rarely sufficient to
find a perfect separator. Thus the perceptron inner loop may execute
many times before converging. When T is inseparable, or just not
known to be separable, one can force termination by specifying the
maximum number of epochs E.

Definition 1 (Linear Separability).
Linearly Separable T ,
∃w∗. ∃w∗0 . ∀(x, l) ∈ T . l = sign(w∗Tx + w∗0).

A data set is linearly separable if there exists a weight vector w∗
and bias term w∗0 such that all feature vectors x in the training data
T have predicted sign equal to their true class label l.

https://github.com/tm507211/CoqPerceptron

3. Perceptron Converges, Informally
As far as we are aware, (Papert 1961) and then (Block 1962) were
the first to prove that the perceptron procedure converges.3 Figure 2
gives intuition for the proof structure.

Assume k is the number of vectors misclassified by the percep-
tron procedure at some point during execution of the algorithm and
let ||wk − w0||2 equal the square of the Euclidean norm of the
weight vector (minus the initial weight vector w0) at that point.4 The
convergence proof proceeds by first proving that ||wk − w0||2 is
bounded above by a functionCk, for some constantC, and below by
some function Ak2, for some constant A. (The constants C and A
are derived from the training set T , the initial weight vector w0, and
the assumed separator w∗.) As the perceptron algorithm proceeds,
the number of misclassifications k approaches C/A. The overall
result follows from this “AC” bound and the fact that, at each itera-
tion of the outer loop of Figure 1 until convergence, the perceptron
misclassifies at least one vector in the training set (sending k to at
least k + 1).

To derive A, observe that wk – the weight vector at step k – can
be rewritten in terms of wk−1 and the most recently misclassified
element xk and its label lk as:

wk = wk−1 + xklk (4)
= w0 + x1l1 + · · ·+ xklk (5)

Subtracting the initial weight vector w0 and multiplying both sides
by w∗T, the transpose of the assumed separating vector w∗, results
in

w∗T(wk − w0) = w∗T(x1l1 + · · ·+ xklk) (6)

Let a = min(x,l)∈T w∗Txl be the minimum vector product w∗Txl
across all vectors label pairs (x, l) in the training set T . Then

w∗T(wk − w0) ≥ w∗T(x1 + · · ·+ xk) ≥ ak (7)

||w∗||2||wk − w0|| ≥ |w∗T(wk − w0)|2 ≥ (ak)2 (8)

where 8 follows from 7 and the Cauchy-Schwarz inequality. From
8, it’s straightforward to derive that A = a2

||w∗||2 .
C is derived by a similar set of inequalities:

||wk − w0||2 = ||wk−1 + xk − w0||2

= ||wk−1 − w0||2 + 2(wk−1 − w0)
Txk + ||xk||2 (9)

where 9 follows by foiling the square of the Euclidean norm.
Assuming ∀i ∈ [1, k],wT

i−1xi ≤ 0, which holds after each xi

has been normalized by multiplying it by its class label, we get that

||wk − w0||2

≤ ||wk−1 − w0||2 − 2(wT
0xk) + ||xk||2 (10)

≤ ||x1||2 + · · ·+ ||xk||2 − 2wT
0(x2 + · · ·+ xk) (11)

Inequality 10 follows from 9 and from nonpositivity. Summing over
all i = 1 to k gives 11 from 10.

Define M = maxx∈T ||x||2 and µ = minx∈T wT
0x. Then from

inequality 11 we have that

||wk − w0||2 ≤Mk − 2µk = (M − 2µ)k (12)

giving C =M − 2µ.

4. Implementation and Formal Proof
In our Coq perceptron, we make three small changes to the Section 2
algorithm:

3 The end of Minsky and Papert’s book (Minsky and Papert 1969) includes a
much more thorough bibliographic survey of the early literature.
4 Subtracting w0 simplifies the calculation of A and C.

• We use Q- instead of real-valued vectors.
• In our representation of training data sets, we use bool instead of
Q to record class labels +1, −1. Thus the type system enforces
canonicity of the labels.

• We record the bias term w0 by consing it to the front of
the decision boundary w. Thus our w vectors are of size 1 +
#features .

Listing 1 gives the basic definitions used by our perceptron imple-
mentation and in the statement of the convergence theorem.

Listing 1: Basic Definitions

Definition Qvec , Vector.t Q.
Definition class (i : Q) : bool , Qle_bool 0 i.
Definition correct_class (i : Q) (l : bool) : bool ,
Bool.eqb l (class i) && negb (Qeq_bool i 0).

Definition consb {n : nat} (v : Qvec n) , 1 :: v.

Qvec is just an abbreviation for the Coq standard-library vector type
specialized to Q. The class (or sign) of an input i : Q (as produced,
for example, from an input vector x by wTx + w0) is determined
by checking whether i is greater than or equal to 0. An input i
is correctly classified, according to label l, if l equals class i and,
additionally, i is nonzero. This second nonzero condition, going
beyond that of equation 1, forces our Coq perceptron to continue
working until no feature vectors lie on the decision boundary.

Listing 2 gives the main definitions.

Listing 2: Coq perceptron
Fixpoint inner_perceptron {n : nat}
(T : list (Qvec n∗bool)) (w : Qvec n.+1)
: option (Qvec n.+1) ,
match T with nil ⇒ None
| (x, l) :: T′ ⇒
if correct_class (Qvec_dot w (consb x)) l
then inner_perceptron T′ w
else let wx, Qvec_plusw (Qvec_mult_class l (consb x))

in match inner_perceptron T′ wx with
| None ⇒ Some wx
| Some w′ ⇒ Some w′
end end.

Fixpoint perceptron {n : nat} {E : nat)
(T : list (Qvec n∗bool)) (w : Qvec n.+1)
: option (Qvec n.+1) ,
match E with 0 ⇒ None
| S E′ ⇒ match inner_perceptron T w with

| None ⇒ Some w
| Some w′ ⇒ perceptron E′ T w′
end end.

The fixpoint inner_perceptron, which corresponds to the inner
loop in Figure 1, does most of the work. Its recursion parameter,
T, is a list of training vectors paired with their labels. The function
iterates through this list, checking whether each training vector
is correctly classified by the current decision boundary w.5 Upon
correct classification of an x, inner_perceptron simply moves to
the next training vector. Upon misclassification, we let the new
decision vector, wx, equal the vector sum of w and x multiplied
by its class label. The function then continues iterating through the
remaining training samples T′.

Listing 2’s second fixpoint, perceptron, implements the outer
loop of Figure 1. Its recursion parameter is a natural number

5 The function consb (Listing 1) conses 1 to x to account for w’s bias term.

E, a value typically called “fuel” in interactive theorem proving
that bounds the number of inner_perceptron epochs. In our for-
mal convergence proof (Section 4.1), we show that for any lin-
early separable training set T, there exists an E large enough to
make perceptron terminate with Some w′. By the definition of
perceptron, convergence only occurs when the algorithm has set-
tled on a w that correctly classified all the training vectors in T
(inner_perceptron T w = None). Thus soundness (if perceptron
converges, it does so with a vector w′ that separates the training set
T) is trivial.

To state the convergence theorem, we first formalize (Listing 3)
what it means for a data set T to be linearly separable. The binary
predicate correctly_classifiedP T w states that vector w correctly
classified training set T (a list of vector-label pairs). A data set T
is linearly separable when there exists a w∗ such that w∗ correctly
classifies T. The main convergence result is thus:

Theorem 1 (Perceptron Converges).
∀{n:nat} (T : list (Qvec n∗bool)) (w0 : Qvec n.+1),
(linearly_separable T →
∃(w : Qvec n.+1) (E0 : nat), ∀E : nat, E ≥ E0 →
perceptron E T w0 = Some w) ∧
∀(E : nat) (w: Qvec n.+1),
perceptron ETw0=Some w → correctly_classifiedP T w.

Listing 3: Linear Separability
Definition correctly_classifiedP {n : nat}
: list (Qvec n∗bool) → Qvec n.+1 → Prop ,
λT w ⇒ List.Forall

(λ xl : (Qvec n ∗ bool) ⇒ let (x, l) , xl in
correct_class (Qvec_dot w (consb x)) l = true) T.

Definition linearly_separable {n : nat}
(T : list (Qvec n∗bool)) : Prop ,
∃w∗ : Qvec n.+1, correctly_classifiedP T w∗.

For all training sets T and initial vectors w0, T is linearly separable
iff there is an E0 such that perceptron converges (to some separator
w) when run on E0 or greater fuel. Note that the second conjunct
of this theorem is trivial, from the definition of the perceptron
algorithm.

4.1 Formal Convergence Proof
What about the formal proof? By the definition of perceptron, the
second conjunct (correctness) of Theorem 1 is easy. But as we
outlined in Section 3, the first conjunct (convergence) requires a bit
more work. In our exposition in this section, we break the proof
into two major parts: Part I defines two alternative formulations of
perceptron – to expose in the termination proof the feature vectors
misclassified during each run – together with refinement proofs
that relate the termination behaviors of the alternative perceptrons,
while Part II composes a proof of the “AC” bound (Section 3) with
the results from Part I to prove the overall Theorem 1. We consider
each part in turn.

4.1.1 Part I.
The implementation of perceptron in Listing 2 returns only the final
weight vector w′ (or None on no fuel) – it gives no indication of
which training vectors were misclassified in the process. Yet the
informal proof explicitly bounds the number of misclassifications.
To get a handle on these “misclassified elements” in our formal
proof, we defined two alternative Fixpoints:

Fixpoint MCE {n:nat} (E:nat) T w : list (Qvec n∗bool) , . . .
Fixpoint perceptron_MCE {n:nat} (E:nat) T w

: option (list (Qvec n∗bool) ∗ Qvec n.+1) , . . .

MCE returns a list of the vectors misclassified by the perceptron
algorithm.The middle fixed point perceptron_MCE serves as a
bridge between perceptron and MCE: it returns either None on no
fuel or a pair of the final weight vector and the list of misclassified
elements (as in MCE). We then prove the following lemmas to relate
the convergence behavior of perceptron, perceptron_MCE, and
MCE:

Lemma MCE_sub_perceptron_MCE :
∀(n E : nat) (w0 : Qvec n.+1) (T : list (Qvec n ∗ bool)),
MCE E T w0 = MCE E.+1 T w0 →
perceptron_MCE E.+1 T w0

= Some (MCEETw0, Qvec_sum_class w0 (MCEETw0)).
Lemma perceptron_MCE_eq_perceptron :
∀(n E : nat) (T : list (Qvec n ∗ bool)) (w0 w : Qvec n.+1),
(∃ M, perceptron_MCE E T w0 = Some (M, w)) ↔
perceptron E T w0 = Some w.

The first lemma proves that MCE’s convergence behavior re-
fines that of the second function perceptron_MCE. If at E fuel,
MCE E T w0 has reached a fixed point (the list of misclassified
feature vectors is stable regardless how much additional fuel we
provide), then perceptron_MCE on E.+1 fuel returns the same
list of misclassified vectors, together with final weight vector equal
the vector sum of w0 and each vector in MCE E T w0 multiplied
by its class label.

The second lemma proves an equitermination property: the
function perceptron_MCE converges to Some (M, w) on training
set T iff perceptron also converges to w.

4.1.2 Part II.
The main difficulty in part II is proving the AC bound on the length
of MCE E T w0, the number of misclassified feature vectors. Note
that the length of MCE E T w0 need not be less than or equal to
|T|, the size of the training set: It’s possible that the same feature
vector is misclassified during multiple iterations of the perceptron
outer loop.

Our formal statement of the MCE bounds lemma is:

Lemma 1 (MCE Bounded).
∀{n:nat} (T : list (Qvec n ∗ bool)) (w0 : Qvec n.+1),
linearly_separable T →
∃A B C : nat, A 6= 0 ∧ B 6= 0 ∧ C 6= 0 ∧
∀E : nat, A ∗ |MCE E T w0|2

≤ B ∗ Qvec_normsq (Qvec_sum (MCE E T w0))
≤ C ∗ |MCE E T w0|.

Qvec_normsq takes the square of the Euclidean norm of its
input vector, while Qvec_sum computes the vector sum of all the
vectors in the provided input list.

Proof. Our proof of the lower bound makes use of the Cauchy-
Schwarz inequality:

Lemma Cauchy_Schwarz : ∀{n:nat} (x1 x2 : Qvec n),
Qvec_dot x1 x2 ∗ Qvec_dot x1 x2 ≤
Qvec_normsq x1 ∗ Qvec_normsq x2.

The upper bound is a bit easier; in particular, it does not require
even that T is linearly separable. For further details, see the Coq
development.

To prove the overall convergence result (Theorem 1), we use
Lemma 1 (MCE Bounded).

Proof of Theorem 1 (Perceptron Convergence). Lemma 1 and the
following arithmetic fact

∀xyz : N. x 6= 0 ∧ y 6= 0 ∧ z > y/x ⇒ xz2 > yz

together imply that the maximum length of MCE E T w0 is
(C/A).+1, for any E and w0 and for linearly separable T. To
prove the overall result (Theorem 1), we compose the bound on the
length of MCE E T w0 with the termination refinements from Part
I. For further details, see the Coq development.

4.2 Averaged Perceptron
The basic perceptron sometimes produces separators that do not
generalize well to unseen data. Variants of the algorithm, like
the voted and averaged perceptron, were developed to increase
generalizability in exactly such cases (Daumé 2017).

For example, instead of returning a single weight vector, the
voted perceptron stores all the weight vectors encountered during
training, together with how long each “survived” (the number of
training vectors between the misclassification that produced the
vector and the next misclassification), and makes predictions by
tallying each weight vector’s classification votes. The averaged
perceptron is a variant of voted perceptron that instead stores just
the weighted average of the weight vectors. Both the voted and
averaged perceptron use the same convergence criterion as the basic
perceptron.

To demonstrate the extensibility of our perceptron implementa-
tion and proof, we implemented and proved convergent averaged
perceptron on top of our existing codebase. Since the averaged and
basic perceptron share the same termination criterion, extending our
convergence proof simply required proving an additional termina-
tion refinement, in the form of the following theorem:

Lemma perceptron_averaged_perceptron :
∀{n : nat} (E : nat) T (w0 : Qvec (S n)),
(∃ w, perceptron E T w0 = Some w) ↔
(∃ w, averaged_perceptron E T w0 = Some w).

5. Certifier
The perceptron of Listing 2 is a standalone program that both com-
putes a separating hyperplane for T and checks (in its final iteration
of inner_perceptron) that the hyperplane correctly separates T.

In some cases, it may be desirable to run an unverified implemen-
tation of perceptron, or even of some other algorithm for learning
linear separators, and then merely check that the unverified algo-
rithm produced a valid separator for T. To get soundness guarantees,
the checker, or certifier, should itself be proved correct.

We implemented such a certifier by applying just the inner loop
of the perceptron algorithm to a purported separator supplied by
an oracle, e.g. in C++. In this hybrid architecture, we learn less
about the termination behavior of the system (if the oracle is buggy,
the program may diverge even if the training data are linearly
separable) but still get strong guarantees on soundness (if the certifier
succeeds, the purported separator is valid for T). In situations in
which performance is critical but termination bugs are acceptable,
this hybrid architecture can give speedups over our fully verified
perceptron (Section 7).

To implement the certifier, we use the inner loop of function
perceptron_MCE of Section 4.1.1 (inner_perceptron_MCE)
rather than the inner_perceptron of Listing 2. Both functions re-
turn None when the input weight vector correctly classifies T. Upon
failure, however, the function inner_perceptron_MCE addition-
ally returns the list of elements that were misclassified, which serves
as a counterexample to the purported separator.

We demonstrate soundness of the certifier with the following
theorem:

Theorem inner_perceptron_MCE_correctly_classified :
∀n (T : list (Qvec n∗bool)) (w : Qvec n.+ 1),
inner_perceptron_MCE T w = None →
correctly_classifiedP T w.

If inner_perceptron_MCE returns None when applying the pur-
ported separator w to training set T, then w is a valid separator for
T (correctly_classifiedP T w).

6. Fuel for the Fire
In Section 4, we proved (Theorem 1) that there exists an E for which
perceptron converges, assuming the training set T is separated by
some w∗. But actually producing this E, in order to supply it as fuel
to our perceptron program, requires that we first decide whether
such a w∗ exists.

It is possible to define and prove a decision procedure for linear
separability, e.g., by calculating the convex hulls of the positive
and negative labeled instances in T and checking for intersection.6

However, we have not yet done so in this work.
Nonetheless, for practical purposes, it is important when running

perceptron that we supply fuel large enough not to artificially cause
early termination. If the dataset is large, the requisite fuel might be
even larger.

In our extracted code, to avoid having to specify very large fuel
for large datasets, we instead generate “free fuel” by extracting
perceptron to “fueled_perceptron” as follows:

Definition gas (T : Type) (f : nat → T) : T , f O.
Extract Constant gas ⇒
’’(\f → let infiniteGas = S infiniteGas in f infiniteGas)’’.
Definition fueled_perceptron
(n _ : nat)
(T : list (Qvec n ∗ bool))
(w : Qvec (S n)) : option (Qvec (S n)) ,
gas (λ fuel ⇒ perceptron fuel T w).

The function gas supplies f with fuel 0 in Coq but is extracted to a
Haskell function that applies f to infiniteGas, as generated by the
coinductive equation let infiniteGas = S infiniteGas.7

6.1 Extraction
In the experiments we will describe in Section 7, we find that
judicious use of extraction directives, especially:

• Haskell arbitrary-precision Rationals for Coq Qs
• Haskell lists for Coq Q-vectors

greatly speeds up the Haskell code we extract from our Coq
perceptron. Because extraction directives increase the size of our
trusted computing base, we briefly justify, in this section, our
particular choices.

We extract Coq rationals Q to Haskell arbitrary-precision
Rationals using the following directive:

Extract Inductive Q ⇒ ’’Rational’’
[’’(\n d → (Data.Ratio.%) n d)’’].

along with others for the various Q operators, e.g.:

Extract Constant Qplus ⇒ ’’(Prelude.+)’’.

6 The work of (Pichardie and Bertot 2001) or of (Brun et al. 2012) may be
helpful here.
7 As suggested by an anonymous reviewer, one alternative to the use of “free
fuel” is to use Coq’s Acc together with singleton elimination – a strategy
which avoids the use of custom extraction directives.

Such directives do not introduce bugs as long as Haskell’s Rationals
and associated operators over Rationals correctly implement the
Coq Q operators we use in our Coq perceptron. In order to speed
up operations over Coq positives and Zs, we use similar Extract
Inductive directives to extract both types to Haskell arbitrary-
precision Integers.

Our final optimization extracts Coq vectors (Vector.t, or Qvec
for the specialization of Vector.t to Q) to Haskell lists, using
directives such as:

Extract Inductive Vector.t ⇒
’’([])’’ [’’[]’’ ’’(\a _ v → a : v)’’]
’’(\fNil fCons v →

case v of
[] → fNil ()
(a : v’) → fCons a O v’)’’.

Extract Constant Coq.Vectors.Vector.fold_left ⇒
’’(\g a _ l → Prelude.foldl g a l)’’.

Taken together, these directives provide big speedups over an
unoptimized extraction of the same Coq program (Section 7). One
obvious speedup comes from using Haskell’s optimized arbitrary-
precision Rationals, implemented as pairs of arbitrary-precision
Integers. Another is likely from using standard Haskell lists and
list functions, such as foldl, which a Haskell compiler such as GHC
may optimize more fully than the vector type extracted from Coq.

With extraction directives turned on, our toplevel Haskell per-
ceptron is:

type Qvec = ([]) Rational
. . .

perceptron ::
Nat → Nat → (([]) ((,) Qvec Prelude.Bool)) → Qvec →
Option Qvec

perceptron n e t w =
case e of {
O → None;
S e’ →
case inner_perceptron n t w of {
Some w’ → perceptron n e’ t w’;
None → Some w}}

fueled_perceptron n _ t w =
gas (\fuel → perceptron n fuel t w)

The function perceptron checks for sufficient fuel e but always re-
duces to the S case because of its calling context (fueled_perceptron
and gas). The type of training data T is no longer a list of Qvecs
but rather a list of Rational lists, with each vector paired to a
classification label of type Bool.

7. Experiments
In this section, we answer a number of experimental questions,
including: (1) Is our Coq perceptron practical for real-world use?
(The short answer is a qualified “yes” – so far, we’ve had success on
some small- to medium-size data sets but have not yet experimented
with large data sets.) (2) How well does it scale relative to a C++
implementation of the same algorithm, using arbitrary-precision
rationals instead of Coq Q, in number of features, number of training
vectors, and size of feature coefficients? (3) How well does it scale
relative to a certifier-style implementation with a fast C++ floating-
point oracle?

We performed two main experiments. In the first (Section 7.1),
we ran our various perceptron implementations on two real-world
data sets downloaded from the UCI Machine Learning Reposi-
tory (Lichman 2013): the classic Iris pattern-recognition data set
(Fisher 1936) and a “Mines vs. Rocks” data set. Both data sets

are known to be linearly separable. In the second experiment (Sec-
tion 7.2), we generated a number of random linearly separable data
sets that differed in number of features, number of training vectors,
and the magnitude of the feature coefficients. We consider each
experiment in turn.

7.1 Real-World Data Sets
The Iris pattern-recognition data set (Fisher 1936) was collected
in the 1930s, primarily by Edgar Anderson (Anderson 1935) in
Québec’s Gaspé peninsula. This data set measures 4 features of 3
species of Iris and includes 150 training vectors. The features are:
sepal width, sepal length, petal width, petal length. To turn the 3-
class Iris data set into a binary classification problem, we labeled the
feature vectors either Iris setosa or not Iris setosa (Iris versicolor or
Iris virginica).

Our second real-world data set, also drawn from the UCI Ma-
chine Learning Repository, used sonar to discriminate metal cylin-
ders (mines) from rocks across 60 features. Each feature was re-
ported as a number with fixed precision between 0.0 and 1.0. While
this data set contained 208 training vectors, it took a considerable
number of iterations to converge to a separator.

We report the total runtime (in seconds) of our extracted Coq
perceptrons, our arbitrary-precision rational and floating-point C++
implementations, and our extracted Coq validation of the C++
output in Figure 3. We measure two extraction schemes. The
first (labeled Coq⇒Haskell) extracts to Haskell using only the
extraction directive associated to gas in Section 6; the second
(Coq⇒OptHaskell) additionally uses the other extraction directives
described in Section 6 – Coq Q to the arbitrary-precision Haskell
Rational type and Coq Vector.t to Haskell list. Although the “Rocks
vs. Mines” data set is small (60 features across 208 instances),
it required 275227 epochs to converge; the Iris data set required
4. While C++ outperforms Coq⇒Haskell on both data sets, the
Coq⇒OptHaskell outperforms the C++ rational implementation by
a factor of 3 on the “Rocks vs. Mines” dataset. The C++ floating-
point implementation outperformed all other implementations on
both data sets. But while C++ floating-point returned a correct
separator for the Iris data set, the separator it returned in Rocks
vs. Mines misclassified 2 of 208 training vectors, as a result of
floating-point approximation errors.

7.2 Does Coq perceptron Scale?
To experimentally evaluate the asymptotic performance of our Coq
perceptrons, we generated a number of linearly separable data sets
that differed across number of feature vectors, number of features,
and bounds on the magnitude of feature coefficients (to evaluate
the overhead of Coq Q). To generate each such data set, we first
randomly initialized a separating weight vector w (giving a random
separating hyperplane), and then drew feature vectors from a discrete
uniform distribution. We labeled each random feature vector as
either positive or negative by calculating which side of the separating
hyperplane it fell on. To ensure that no feature vectors fell exactly
on the separating hyperplane, we rejected those vectors whose dot
product with w equaled 0.

Figure 4 displays the results. In the plot, we show the relative
runtime of the “vanilla” unoptimized Coq, optimized Coq, validator,
and C++ floating-point and arbitrary precision rational perceptrons,
normalized to C++ floating-point plus validation. As the number of
vectors increases, classification becomes more difficult (many more
feature vectors will, in general, lie close to the decision boundary).
We see that for optimized Coq, C++ over rationals, and vanilla
Coq, runtime increases worse than linearly with the number of
feature vectors (as expected: the number of epochs required also
grew worse than linearly as the number of vectors increased). Our
optimized Coq perceptron is about one order of magnitude slower

Coq⇒Haskell Coq⇒OptHaskell C++ Rat C++ FP Validator
Iris 0.049s 0.027s 0.039s 0.021s 0.027s

Rocks/Mines 95.4h 2.14h 6.56h 48.787s 0.295s

Figure 3: Coq vs. Coq-Optimized vs. arbitrary-precision rational and floating-point C++ on real-world data

Figure 4: Coq vs. optimized Coq vs. rational and floating-point C++
on three synthetic data sets

than the C++ floating-point implementation, but is on par with (and
sometimes faster than) the C++ rational implementation. The vanilla
Coq implementation that does not use the extraction directives of
Section 6 is a little less than one order of magnitude slower yet again
than the optimized Coq implementation.

Perhaps unsurprisingly, although the C++ floating-point imple-
mentation with validation in Coq was fastest among all the imple-
mentations we tested, it also often generated incorrect separators. On
problems of size 50 vectors, for example, it typically misclassified
about 60% of vectors.

Our optimized Coq perceptron performed about as well as the
C++ rational implementation of the same algorithm, but in some
cases surpassed C++ (by about 3x on the real-world Rocks vs. Mines
data set of Figure 3, for example). Both the C++ rational and opti-
mized Coq implementations were about 10x slower than a floating-
point implementation of perceptron. However, the floating-point
perceptron only rarely produced perfect separators on the instances
we tested. In some machine-learning contexts, perhaps approximate
separators are sufficient. The unoptimized Coq perceptron was dog
slow compared to all other implementations. We attribute the slow-
down to the use of user-defined Qs and user-defined collection types
like Coq Vector.t, which a Haskell compiler such as GHC may
not optimize as fully as functions over standard datastructures like
Haskell lists.

8. Related Work
Bhat (Bhat 2013) has formalized nonconstructive implementations
of classic machine-learning algorithms such as expectation maxi-
mization in a typed DSL embedded in Coq. However, we are not
aware of previous work on mechanized proofs of convergence of
such procedures, or of learning procedures in general. A subset of
the theorem proving community has embraced machine-learning
methods in the design and use of theorem provers themselves (cf.
the work on ML4PG (Komendantskaya et al. 2012) for Coq or
ACL2(ml) (Heras et al. 2013)).

There is more work on termination for general programs. The-
orem provers based on dependent type theory such as Coq and
Agda (Norell 2007) generally require that recursive functions be
total. Coq uses syntactic guardedness checks whereas provers like
Agda incorporate more compositional type-based techniques such
as Abel’s sized types (Abel 2004). There are other ways to prove ter-
mination such as Coq’s Program Fixpoint and Function features,
or through direct use of Coq Fix. These latter features typically
require that the user prove a well-founded order over one of the
recursive function’s arguments.The termination argument might be
more sophisticated and rely on, e.g., well-quasi-orders (Vytiniotis
et al. 2012). In the automated theorem proving literature, researchers
have had success proving termination of nontrivial programs auto-
matically (e.g., (Cook et al. 2006)).

Extending our Q-valued Coq perceptron to use floating-point
numbers, following work on floating-point verification in Coq
such as Flocq (Boldo and Melquiond 2011) and (Ramananandro
et al. 2016), is an interesting next step. Nevertheless, many of the
additional research challenges are orthogonal to our results so far.
For one, analyzing the behavior of learning algorithms in limited-
precision environments is still an active topic in machine learning
(cf. (Gupta et al. 2015) for some recent results and a short survey).
Nor do we know of any paper-and-pencil perceptron convergence
proof that allows for approximation errors due to floating-point
computation.

Grégoire, Bertot, and others (Bertot 2015; Grégoire and Théry
2006) have applied theorem provers such as Coq to computationally
intensive numerical algorithms, e.g., computing proved-correct
approximations of π to a million digits. We have done initial
experiments with Grégoire and Théry’s BigZ/BigQ library (used in
both (Bertot 2015) and (Grégoire and Théry 2006)), in the hope that
it might speed up our Coq perceptron of Section 7. In initial tests,
we’ve seen a slight speedup when switching to BigQ (about 1.6×)
with vm_compute in Coq but a slowdown in the extracted OCaml,
over 1000 iterations of the inner loop of perceptron on vectors of
size 2000. The reason is, perhaps, that the representation of Z in
Grégoire and Théry’s BigZ was optimized for very large integers and
for operations like square root, which is not used by the perceptron
inner loop. In fact, we noticed that we could drive the relative
speedup of BigQ higher (under vm_compute) by increasing the
size of coefficients in the test vectors.

9. Conclusion
This paper presents the first implementation in a theorem prover
of the perceptron algorithm and the first mechanically verified
proof of perceptron convergence. More broadly, our proof is a case-
study application of interactive theorem proving technology to an
understudied domain: proving termination of learning procedures.
We hope our work spurs researchers to consider other problems in
the verification of machine-learning methods, such as (for instance)
asymptotic convergence of SVM training algorithms. At the same
time, there is still work to do to make verified implementations of
such algorithms usable at scale. Our perceptron certifier architecture
demonstrates one method for scaling such systems, by composing
fast unverified implementations with verified validators.

References
Andreas Abel. Termination Checking with Types. ITA, 2004.
Edgar Anderson. The Irises of the Gaspé Peninsula. Bulletin of the American

Iris Society, 59:2–5, 1935.
Yves Bertot. Fixed precision patterns for the formal verification of mathe-

matical constant approximations. In Proceedings of the 2015 Conference
on Certified Programs and Proofs, pages 147–155. ACM, 2015.

Sooraj Bhat. Syntactic foundations for machine learning. PhD thesis,
Georgia Institute of Technology, 2013.

Hans-Dieter Block. The Perceptron: A Model for Brain Functioning. I.
Reviews of Modern Physics, 34(1):123, 1962.

Sylvie Boldo and Guillaume Melquiond. Flocq: A unified library for proving
floating-point algorithms in Coq. In Computer Arithmetic (ARITH), 2011
20th IEEE Symposium on, pages 243–252. IEEE, 2011.

Christophe Brun, Jean-François Dufourd, and Nicolas Magaud. Formal Proof
in Coq and Derivation of an Imperative Program to Compute Convex
Hulls. In Aut. Deduction in Geom. 2012.

T-S Chang and Khaled AS Abdel-Ghaffar. A universal neural net with
guaranteed convergence to zero system error. IEEE Transactions on
signal processing, 40(12):3022–3031, 1992.

Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination
Proofs for Systems Code. In PLDI, 2006.

Koby Crammer and Yoram Singer. Ultraconservative online algorithms for
multiclass problems. Journal of Machine Learning Research, 3(Jan):
951–991, 2003.

Hal Daumé, III. A course in machine learning. http://ciml.info/,
2017. Accessed: 2017-03-22.

Ronald A Fisher. The Use of Multiple Measurements in Taxonomic Problems.
Annals of Eugenics, 7(2):179–188, 1936.

Benjamin Grégoire and Laurent Théry. A purely functional library for
modular arithmetic and its application to certifying large prime numbers.
In International Joint Conference on Automated Reasoning, pages 423–
437. Springer, 2006.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish
Narayanan. Deep learning with limited numerical precision. CoRR,
abs/1502.02551, 392, 2015.

Jónathan Heras, Ekaterina Komendantskaya, Moa Johansson, and Ewen
Maclean. Proof-pattern Recognition and Lemma Discovery in ACL2. In
LPAR, 2013.

Ekaterina Komendantskaya, Jónathan Heras, and Gudmund Grov. Ma-
chine Learning in Proof General: Interfacing Interfaces. arXiv preprint
arXiv:1212.3618, 2012.

M. Lichman. UCI Machine Learning Repository, 2013. URL http:
//archive.ics.uci.edu/ml.

Marvin Minsky and Seymour Papert. Perceptrons. MIT Press, 1969.
Ulf Norell. Towards a Practical Programming Language Based on Dependent

Type Theory, 2007.
Seymour Papert. Some mathematical models of learning. In Proceedings of

the Fourth London Symposium on Information Theory, 1961.
David Pichardie and Yves Bertot. Formalizing convex hull algorithms. In

International Conference on Theorem Proving in Higher Order Logics,
pages 346–361. Springer, 2001.

Tahina Ramananandro, Paul Mountcastle, Benoît Meister, and Richard
Lethin. A unified coq framework for verifying c programs with floating-
point computations. In Proceedings of the 5th ACM SIGPLAN Conference
on Certified Programs and Proofs, pages 15–26. ACM, 2016.

Frank Rosenblatt. The Perceptron – A Perceiving and Recognizing Au-
tomaton. Technical Report 85-460-1, Cornell Aeronautical Laboratory,
1957.

Frank Rosenblatt. Principles of Neurodynamics; Perceptrons and the Theory
of Brain Mechanisms. Spartan Books, 1962.

The Coq Development Team. The Coq Proof Assistant. https://coq.
inria.fr/, 2016. [Online; accessed 2-19-2016].

Dimitrios Vytiniotis, Thierry Coquand, and David Wahlstedt. Stop When
You Are Almost-Full. In ITP. 2012.

http://ciml.info/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://coq.inria.fr/
https://coq.inria.fr/

	Introduction
	Perceptron
	Perceptron Converges, Informally
	Implementation and Formal Proof
	Formal Convergence Proof
	Part I.
	Part II.

	Averaged Perceptron

	Certifier
	Fuel for the Fire
	Extraction

	Experiments
	Real-World Data Sets
	Does Coq perceptron Scale?

	Related Work
	Conclusion

