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Abstract— One of the common practices in obesity and
diabetes studies is to measure the volumes and weights of
various adipose tissues, among which, visceral adipose tissue
(VAT) and subcutaneous adipose tissue (SAT) play critical yet
different physiological roles in mouse aging.

In this paper, a robust two-stage VAT/SAT separation frame-
work for micro-CT mouse data is proposed. The first stage
is to distinguish adipose from other tissue types, including
background, soft tissue and bone, through a robust mixture
of Gaussian model. Spatial recognition relevant to anatomical
locations is carried out in the second step to determine whether
the adipose is visceral or subcutaneous. We tackle this problem
through a novel approach that relies on evolving the abdominal
muscular wall to keep VAT/SAT separated. The VAT region of
interest (ROI) is also automatically set up through an atlas
based skeleton matching procedure.

The results of our method are compared with VAT/SAT de-
lineations by human experts, and a high classification accuracy
is demonstrated on eight micro-CT mouse volume sets.

I. INTRODUCTION

Excess abdominal adipose tissue is associated with in-
creased risk of cardiovascular and metabolic aberrations
of obesity, diabetes and coronary artery diseases. Accurate
measurement of adipose tissue distribution based on small
animal imaging devices, including magnetic resonance imag-
ing (MRI) and computerized tomography (CT), would offer
a useful insight when studying these diseases and evaluating
the efficacy of treatment compounds using small animal
subjects.

Among various adipose types, visceral adipose tissue
(VAT) and subcutaneous adipose tissue (SAT) play partic-
ularly critical yet different physiological roles in various
disease procedures. While both VAT and SAT have been
associated with many metabolic risk factors including fast-
ing plasma insulin, triglycerides, low-density lipoprotein,
or cholesterol levels, VAT is more closely correlated with
coronary artery diseases or diabetes, and therefore more
predictive of obesity-induced pathologies than whole body
adipose tissue and SAT.

The past ten years have seen the development of a number
of automatic VAT/SAT separation algorithms [1], [2], [3],
[4], [5], [6], which usually involve two major analysis
tasks. The first step is adipose extraction, i.e. distinguishing
fat from other tissues. Various voxel classification based
on single or multi-channel intensity values [7] have been
utilized to tackle this problem. Commonly modeled with

certain parametric voxel statistics, these methods estimate
the distribution profile of each class based on image pixel
intensities, and classification is carried out according to the
probability value of each individual pixel. With respect to
the form of the probability density function, finite Gaussian
mixture models [8], [9], [10] has been widely assumed in
many segmentation models.

The second step is to further classify the fat into subcuta-
neous or visceral based on relative anatomical locations with
respect to the abdominal muscular wall. Region-growing
algorithms [11] start from manually or automatically planted
seed points in different fat regions, and iteratively propagate
memberships to nearby voxels according to their similarity
in intensities and proximity in locations. The expansion will
stop when the similarity falls below certain threshold in
nearby regions. Another group of solutions locate SAT and
VAT through the tracking of the abdominal muscular wall.
The wall is beneath the subcutaneous fat, which is visible in
any given trans-axial slice; thus, evolving the wall along the
slice stack will result in enclosed VAT area. Edge-based [5],
[12], [13] and region-based [6] active contour models fit in
well to achieve this goal. However, the contour-based wall-
tracking approaches for VAT/SAT separation tend to suffer
from weak boundary as well as edge leakage problem. In
order to keep the contour faithfully aligned with the actual
muscle wall, extra care needs to be taken to avoid the curve
bending into VAT areas. In addition, with the exception
of [6], most published works in the literature rely on user
intervention to manually choose the starting and ending slices
that define the VAT region of interest (ROI).

A. Proposed method

In this paper, we present a robust VAT/SAT separation
framework to address the aforementioned issues. In the
fat/non-fat separation step, we adopt a robust finite Gaus-
sian mixture classification method to accurately capture the
fat tissues. To propagate the abdominal wall for VAT/SAT
delineating, a deformable registration is applied along slice
stack to ensure a robust and smooth region tracking. Through
an atlas-based skeleton matching procedure, a fully automatic
VAT ROI setup has been implemented by locating the T10
and L5 vertebrae.



II. METHODS

In this section, we illustrate our VAT/SAT separation
framework in the order: 1) robust fat/non-fat separation
based a mixture of Gaussian model; 2) VAT/SAT separation
through wall evolution; 3) VAT ROI set up based on bone
signature and 4) segmentation result validation with semi-
automatic results as the gold standard.

A. Fat/non-Fat separation based L2E

To separate fat and non-fat areas in micro-CT data, we
adopt a robust finite Gaussian mixture (FGM) segmentation
method, where the fitting criterion is defined as the squared
difference between the true density and the assumed Gaus-
sian mixture.

Suppose y(x) is an unknown density function. The para-
metric approximation of y(x) is ŷ(x|θ). The L2E minimiza-
tion estimator for θ is given as:

θ̂L2E = argmin
θ

∫
[ŷ(x|θ)− y(x)]2dx (1)

= argmin
θ

∫
[ŷ2(x|θ)− 2ŷ(x|θ)y(x) + y2(x)]dx

Let φ(x|µ,σ) denotes the univariate normal density, the
parametric distribution assumed by FGMs is as follows:

y(x|θ) =
K∑
k=1

wkφ(x|µk, σk) (2)

where θ = {w,µ,σ} is a combined vector representing
the portions, means, and standard deviations of the Gaussian
components.

Expectation-Maximization (EM) algorithm, the estimator
of the Maximum Likelihood (ML) measure, has been widely
used in many FGM-based segmentation algorithms. How-
ever, ML, together with EM, is inherently not robust and
potentially influenced by input outliers. Our robust model
is formulated as a special case of Eqn. (1), where ŷ(x|θ)
is a mixture of Gaussians. Comparing with the popular ML
(EM) measure, our solution has the advantage of being able
to capture target structures accurately, without being affected
by the outlier components. For more details, we refer the
readers to [14].

B. VAT/SAT separation through deformable registration
along slice stack

After the overall fat tissues are obtained, further separating
the areas into SAT and VAT can be achieved by propagating
the abdominal wall along axial slices. Currently, most solu-
tions model the wall as a sequence of closed 2D contours,
which can be tracked through a curve evolution procedure.
However, due to the vast elasticity allowed for the curves,
the evolution procedure tends to deviate from the course and
get trapped into interior areas of VAT, especially when weak
edges are encountered.

Our wall tracking solution is to replace slice-wise curve
evolution with slice-wise registration, and the justification
is twofold. On one hand, deformable registration keeps

Fig. 1. Illustration of the abdominal wall evolution procedure. Please refer
to text for details.

track of the corresponding structures in neighboring slices,
therefore helps achieve the goal of morphing and extracting
the abdominal wall. On the other hand, with an imposed
smoothness constraint to the deformation field, the evolutions
of the wall are confined within certain limits, which puts a
safeguard to prevent the placements of the evolving wall from
vastly deviating off the target.

Fig. 1 illustrates the procedure. A central slice extracted
around the mid point of the body, together with its lean
tissue, was chosen as the starting point. The lean tissue
is a “by-product” of the fat/non-fat separation procedure.
The abdominal wall contour, a sequence of points, can
be easily obtained through a morphological operation per-
formed on the boundary of the lean tissue. Two registration
progressions are subsequently conducted towards opposite
directions along the axial slice stack. In our study, the
Demons’ algorithm is adapted as the underlying deformable
registration solution.

Fig. 1(a) is an illustration of the overall wall evolution
procedure. Fig. 1(b) is the lean portion within the central
slice C0 and Cn is another slice, which could be the
immediate neighbor of C0. Fig. 1(e) is the transformed C0

after applying the estimated deformation Fig. 1(d) between
(b) and (c). Evolution of the abdominal wall is achieved by
repeatedly conducting the registration & transformation steps
for neighboring slices.

C. VAT region of interest (ROI) setup based on skeleton atlas

To automatically decide the region of interest (ROI) of
VAT is a challenging problem for mouse subjects. A number
of solutions have been reported to tackle this issue through
the utilization of bone index [2] and adipose/lean amount
[6].

We adopt a commonly accepted bone signature criterion
[2] to set up the VAT ROI — it should cover the entire
abdominal cavity (slices spanning between the proximal end



of the T10 vertebra and the distal end of the L5 vertebra). To
automate the ROI selection procedure, we employ an atlas
based approach, where the atlas was an arbitrarily chosen
mouse from our experiment data set. The ROI of the atlas
was manually set by specifying the starting and ending slices
of the T10 and L5 vertebrae. Other mice’s ROIs are decided
through a skeleton matching w.r.t. to the atlas. The procedure
starts with skeleton centerline extraction based on a fast
marching method [15]. Then, the skeletons of each input
mouse and the atlas are matched through a robust point
registration algorithm [16]. With the matched spines, the
T10 and L5 vertebrae of each mouse can be easily localized.
Fig. 2 shows the skeleton registration and ROI identification
procedure (the bottom mouse is the atlas).

Fig. 2. VAT ROI localization: the volume between the two yellow lines is
the ROI (T10-L5).

D. Validation based on semi-manual ground truth

To evaluate the accuracy and robustness of our VAT/SAT
separation framework, semi-manual analysis from trained
operators was considered as the ground truth segmentation
and used as a reference.

The semi-manual functionality is implemented within a
three-view display software package, where the user can
specify VAT boundary points by clicking on axial slices. The
boundary points are expected to be placed around the centers
of the abdominal contour, and a resampling & interpolation
routine will be applied to densify the control points and
generate a smooth yet faithful curve to separate the VAT
& SAT areas.

With the semi-manual results available as the ground
truth, we can assess the accuracy and consistency of our
segmentation results through a comparison between the au-
tomatic and semi-manual segmentations. The performance
metrics used in our study include: Correlation Coefficient,
Dice Coefficient, Sensitivity and Specificity. Dice coefficient
measures the similarity of two sets and ranges from 0 for
sets that are disjoint to 1 for sets are identical.

Fig. 3. Three-view display of a VAT/SAT separation result generated from
our framework. Blue and red areas correspond to the extracted SAT and
VAT, respectively.

III. EXPERIMENTAL RESULTS

The experiment we conducted was based on 8 sets of
micro-CT mouse images provided by Edison Institute at Ohio
University. The data sets were obtained using the GE eXplore
Locus Small Animal MicroCT Scanner (GE Healthcare,
London, Ontario, Canada) with a 95-micron voxel protocol
with the following scan parameters: 80 kV, 450 m A, and
2000-milliseconds exposure time. The mice, ranging from 9
to 12 months old, are C57BL/6J background.

Fig. 3 shows one of the subjects and the separation result.
Blue and red areas correspond to the extract SAT and VAT,
respectively. It should be noted that with the presence of
a very thin and even disappearing abdominal wall lying
between SAT and VAT, primitive segmentation methods,
such as intensity thresholding, or region-growing algorithms,
would not be sufficient to achieve the goal.

A. Statistical Analysis for VAT/SAT separation

Due to the huge number of slices in each mouse data set
(on average, the VAT ROI spans 200 slices), semi-manual
segmentation was performed on sampled slices instead of
the entire volume. For each mouse data set, we sampled
ten slices that are roughly even-spaced within the VAT ROI
area. Evaluation of the VAT/SAT segmentation accuracy and
consistency was carried out based on the sampled slices. Au-
tomatic segmentation results were compared with the semi-
manual ground truth, and statistical analysis were conducted
accordingly.

The correlation coefficients estimated from the eight data
sets is shown in Fig. 4. For SAT, the coefficient R2 is 0.994,
and for VAT, 0.996, with confidence level of 95% . Both are
very close to 1, which indicates our automatic results are
highly aligned with the semi-manual ground truth.

Other performance metrics results are shown in Table 1,
inculding Dice coefficient (DC.), Sensitivity (Sensi.), and
Specificity (Speci.). The average Dice coefficient (similarity
index) for the eight mice data sets for SAT is 0.9690;
for VAT, is 0.9753 respectively, which are higher than the



Fig. 4. Correlation of automatic and semi-manual results in SAT and VAT.

reported numbers in two published work [4], [5]. Although
no direct comparison with other works can be made at this
point due to the different testing data used, the high similarity
indexes obtained are good indications of the accuracy and
robustness of our solution.

Set DC. [SAT] DC.[VAT] Sensi. [SAT] Speci. [SAT]
1 0.9439 0.9525 0.9237 0.9974
2 0.9549 0.9537 0.9224 0.9891
3 0.9514 0.9655 0.9188 0.9905
4 0.9579 0.9613 0.9131 0.9947
5 0.9862 0.9874 0.9814 0.9919
6 0.9898 0.9942 0.9808 0.9904
7 0.9850 0.9922 0.9822 0.9937
8 0.9830 0.9956 0.9806 0.9963
Ave. 0.9690 0.9753 0.9504 0.9930
STD. 0.0187 0.0188 0.0332 0.0030

TABLE I
PERFORMANCE METRICS BETWEEN AUTOMATIC SEGMENTATION

RESULTS AND SEMI-MANUAL GROUND TRUTH. (NOTE: SINCE THE SAT
AND VAT ARE MUTUALLY EXCLUSIVE AND EXHAUSITIVE WITHIN THE

TOTAL ANDIPOSE TISSUE, THE SENSITIVITY AND SPECIFICITY FOR VAT
ARE IDENTICAL TO THE SPECIFICITY AND SENSITIVITY FOR SAT.)

IV. CONCLUSIONS

We have described a fully automatic framework for
VAT/SAT adipose tissue separation that requires virtually no

user intervention. Two tasks are involved, first fat/non-fat and
then VAT/SAT separation, and the evolution procedure can
terminate at the end of VAT area due to an automated ROI
setup mechanism. The novelty of our solution for the second
step lies in the fact that a regularity-guaranteed registration
algorithm can very well impose global control over the curve
evolution procedure. Extending the current model to handle
other tissue/organ segmentation, as well as various pathology
dection are among our planned work.
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