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ABSTRACT

Detailed analysis of brain structures is essential in iden-
tifying anatomical biomarkers in Alzheimer’s disease (AD).
In this paper, we develop a new radial distance model to
compare different hippocampal shapes and measure their at-
rophies over time. Using harmonic mappings, we project
hippocampal surfaces onto cylinders to obtain evenly-spaced
quadrilateral meshes. Surface radial distances estimated via
the quad-meshes are invariant to global shifts in the surround-
ing tissues, leading to a powerful way to detect localized
anatomical progressions. The novel quad-meshing method
also provides an efficient means to align anatomical surfaces
across subjects. Through regions of interest (ROI) analy-
sis, we extract discriminative patches of radial distance and
atrophy, and utilize them as anatomical features for patient
classification. The effectiveness of the proposed surface mod-
eling and feature extraction strategies in identifying shape
biomarkers for AD/MCI is evaluated using the ADNI dataset.

1. INTORDUTION

Alzheimer’s disease (AD) is one of the major neurodegener-
ative diseases, affecting more than 35 million people world-
wide. It is also reported that 10− 20% of the population aged
65 or older have mild cognitive impairment (MCI), a prodro-
mal state of AD. Identifying biomarkers to characterize the
conditions of the disease is of great importance to the diagno-
sis and treatment assessment of AD.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
provides a wealth of new data including structural and func-
tional MR images to support research on prevention and
treatment of AD. Since the inception of ADNI in 2004, sig-
nificant research efforts have been conducted using ADNI
data to identify neuroimage biomarkers for the diagnosis
of AD/MCI. For anatomical features extracted from struc-
tural MRIs, cortical thickness, volumetry of brain structures
and voxel tissue probability maps across the whole brain or
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around certain regions of interest, are among the popular
choices.

Hippocampal atrophy is one of the major detectable fea-
tures of AD and mixed pathologies. Observing the longitu-
dinal progress is crucial in detecting and differentiating the
conditions. Solutions to analyze 3D hippocampal shapes and
shape changes can be classified into two categories: medial
structure based and surface-based approaches. Solutions in
the first category [1, 2, 3, 4, 5, 6] rely on extracted hippocam-
pal central lines to compare 3D shapes and conduct statisti-
cal group analysis. Medial axis radial distance models [5, 7]
and m-rep [4, 6] are among the widely used solutions. Topo-
logical disparities due to shape variations cause branches of
the medial axis and often pose a challenge for these mod-
els, where correspondence of two topologically different me-
dial trees needs to be carefully defined and sought. The sec-
ond category [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
uses entire hippocampal surfaces as the basis to compute sub-
ject/group dis-similarity, after the surfaces are aligned. Spher-
ical mapping [14, 16] and surface tensor-based morphometry
[15] have been applied to model hippocampal surfaces and
atrophy. Finding the correspondence for surface vertices usu-
ally entails a non-rigid registration procedure, which tends to
be computationally expensive and may fail to find satisfying
alignments.

To overcome aforementioned drawbacks, we propose a
novel quadrilateral mesh based hippocampal surface analy-
sis solution in this paper. By projecting hippocampal surfaces
onto cylinders through harmonic mappings, we obtain evenly-
spaced quad-meshes that provide a common coordinate sys-
tem to align and compare shapes. We then utilize radial dis-
tances based on the quad-mesh representation to characterize
hippocampal surfaces as well as estimate their atrophies over
time. Hippocampal atrophy computed this way is invariant
to global shifts in the surrounding soft tissues and therefore
robust to the errors of registration procedure matching either
MRIs or hippocampal masks. In this paper, we also extract
region-of-interest (ROI) patches for radial distance and atro-
phy, and examine their effectiveness as discriminative struc-
tural features for AD/MCI diagnosis.
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Fig. 4. Group comparison of mean radial distance (first row)
and atrophy (second row) between NC and AD groups. Color
shows mean radial distances & atrophy in millimeters.

3.1. RD and RDA group averages and ROI

Fig. 4 shows average RD, RDA for AD and NC groups. Only
the left hippocampus is shown, but both superior and inferior
views are rendered. The group averages are mapped to a tem-
plate surface. The first row shows the average RD for the two
groups. Warmer color indicates larger radial distances, and
hence larger hippocampal sizes. The second row shows the
average RDA, where cool color corresponds to surface shrink-
ages. As evident, AD hippocampi, on average, are thinner and
have larger atrophy in many areas.

We conducted statistical analysis to assess the RD/RDA
regions of interest between groups. Multi-resolution patches
extracted in section 2.4 capture the major areas where the
groups significantly differ. Fig. 4 shows the top 10 RD (first
row) and RDA (second row) ROI patches between AD and
NC groups. Line colors are assigned to indicate different
patch sizes. AD group have significantly (p < 0.01) smaller
RDs almost everywhere across the hippocampus. AD group
also have significantly (p < 0.01) higher atrophy rates in the
medial side of the head and body and along the lateral side of
the hippocampi, which can be partially observed through the
locations of the ROI patches.

3.2. RD/RDA ROI patches as discriminative features

To investigate the efficacy of RD/RDA biomarkers in distin-
guishing AD and MCI from normal controls, we evaluated
four types of features, “RD+RDA Average”, “RD ROI”,
“RDA ROI” and “RD+RDA ROI” based on three perfor-
mance measures, ACC, SEN, and SPE. Linear support vector
machine (SVM) is utilized as the classifier. To better com-
pare the classification performance, we run each experiment
100 times with different random 3-fold splits (two folds for
training, one fold for testing).

The classification results, averaging over the 100 runs,
are summarized in Table 1. It is clear that combination of
features through wrapper selection leads to improved classifi-

AD versus NC MCI versus NC
Feature ACC(%) SEN(%) SPE(%) ACC(%) SEN(%) SPE(%)

RD+RDA-Avg 78.35 66.59 87.03 70.72 61.77 79.59
RD ROI 84.27 74.05 91.84 72.63 66.30 78.93

RDA ROI 74.83 55.76 88.97 68.95 57.49 80.33
RD+RDA ROI 85.89 79.13 90.92 73.42 72.22 74.61

Table 1. Performance comparision of various RD/RDA fea-
tures for AD/MCI/NC classifications. Boldface denotes the
best performance for each measure.

cation performance over the single feature types: “RD+RDA
ROI” feature has higher classification accuracy than both “RD
ROI” and “RDA ROI”. It can also be observed that RD fea-
tures are generally more indicative than RDA, especially for
AD/NC. The “RD ROI” feature outperforms both “RD+RDA
Average” and “RDA ROI”. A possible explanation is that the
RD features of the AD patients, though estimated at baseline,
may bear the accumulated hippocampal atrophy for several
years. The RDA features, on the other hand, record the atro-
phy for only 12 months.

Method Feature AD versus NC MCI versus NC
ACC SEN SPE ACC SEN SPE

Colliot et al. [30] Hippo Volume 73 63 80 56 73 74
Chupin et al. [31] Hippo Volume 72 71 77 54 70 73

Gerardin et al. [32] Hippo Shape 78 69 84 68 57 88
Proposed method RD/RDA patches 85.89 79.13 90.92 74.88 70.50 79.23

Table 2. Comparision of the proposed method with other ex-
isting hippocampus methods for AD/MCI classifications.

Cuingnet et al. [33] evaluated ten AD/MCI biomarker
solutions using common ADNI dataset, among which three
methods are based on hippocampal volumes and/or shapes
[30, 31, 32]. The classification results for AD/MCI/NC are
listed in Table 2. Compared with them, our RD+RDA ROI
biomarker achieves much higher accuracies for both AD/NC
and MCI/NC classifications. While direct comparisons of the
methods are not feasible, as different subjects, data and clas-
sifiers were used, the high accuracies from our model never-
theless can be regarded as an indirect evidence for the power
of the proposed radial distance and atrophy biomarkers.

4. CONCLUSIONS

A quad-mesh generation solution is developed in this study to
model hippocampal shapes and atrophy. Patch features ex-
tracted from group ROI analysis have proven to be highly
discriminative as anatomical biomarkers for AD/MCI clas-
sification. Integrating our hippocampal features with other
structural and functional biomarkers can potentially boost the
effectiveness of the combined features in characterizing the
conditions of AD for diagnosis and treatment assessment.
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