Nonlinear Metric Learning for Semi-Supervised
Learning via Coherent Point Drifting

Abstract—In this paper, a nonlinear metric learning frame-
work is proposed to boost the performance of semi-supervised
learning (SSL) algorithms. Formulated under a constrained
optimization framework, the proposed method learns a smooth
nonlinear feature space transformation that makes the input data
points more linearly separable in Laplacian SVM (LapSVM).
Coherent point drifting (CPD) is chosen as the geometric model
with the consideration of its remarkable representation power in
generating sophisticated yet smooth deformations. Under CPD,
larger smoothness weights can be assigned to labeled data points,
allowing them to exert more significant influences in SSL. Our
framework has broad applicability, and it can be integrated
with many other SSL classifiers than LapSVM. Experiments
performed on both synthetic and real world datasets show
the effectiveness of our CPD-LapSVM over the state-of-the-art
metric learning solutions in SSL.

I. INTRODUCTION

In many modern applications, including image search, in-
formation retrieval and genomics, while unlabeled data are
abundant, labeled instances are scarce as they may be diffi-
cult or expensive to acquire. Semi-supervised learning (SSL)
aims to solve the classification problem of such inputs by
augmenting labeled data with large amount of unlabeled data
to build better classifiers. A variety of SSL methods have been
proposed in the literature, which include generative models [1],
self-training [2], multi-view [3], transductive support vector
machines (TSVM) [4], graph-based models [5] and neural
network based models [6], among others.

To make up for the lack of labeled samples, SSL solutions
are commonly designed under certain assumption regarding
the distribution of input data. For example, generative models
assume the data follow an identifiable mixture distribution, and
seek to determine the components through labeled samples
[1]. The success of TSVM [4] depends on the validity of
the assumption that unlabeled data from different classes are
linearly separable under the feature space. Graph-based SSL
methods [5] construct graphs where nodes represent samples
(both labeled and unlabeled), and edges (may be weighted)
reflect the similarity between samples. Nodes connected with
large-weight edges are assumed highly likely to be assigned
with the same labels.

The aforementioned assumptions in SSL, if violated in prac-
tice, could easily result in limited validity of the models and
subsequently poor classification performance. Geometrically
transforming the input points to make them in accordance
with the assumed data distribution would provide a remedy.
For distance/similarity based algorithms, learning such a trans-
formation is equivalent to learning a new distance metric

from the training samples. Distance metric learning (DML)
has been extensively studied under supervised setting [7],
[8]. However, it is not trivial to generalize supervised DML
solutions, especially those developed under nearest neighbor
(NN) paradigm, to handle SSL problems.

DML solutions for semi-supervised learning/classification
commonly focus on formulating new regularizations to impose
desired membership coherence throughout the data domain.
LRML [9] and IDML [10] both assume the data lie approxi-
mately on a manifold of much lower dimension than the input
space. The regularization term in LRML is a graph Laplacian,
while IDML algorithm minimizes the harmonic energy over
the data graph. Using a similar objective function as in LRML,
SSM-DML [11] learns multiple Mahalanobis metrics for dif-
ferent feature sets. In SERAPH [12], an information-theoretic
regularization is used to specify neighborhood relationship.
OLapSVM [13] parameterizes graph weights through learning
a Mahalanobis distance metric under Laplacian SVM. Despite
the reported improvements, the existing semi-supervised DML
solutions are mostly linear models performing under either
input space or kernel space, which limit their capabilities in
dealing with complex data.

In light of the limitations and drawbacks, we exploit the
power of geometric space transformations to address the gap
between model assumptions and actual data distributions.
More specifically, we apply a deformation model called Co-
herent Point Drifting (CPD) [14] to make the transformed
data points well conform to the underlying SSL assumptions.
We choose Laplacian SVM (LapSVM), a classic graph-based
SSL model, as the host solution to develop and demonstrate
the effectiveness of our approach. Tailored to semi-supervised
learning problems, we assign labeled points with larger influ-
ence ranges than the unlabeled. The choice of CPD is with two
considerations: 1) its remarkable capability in generating high-
order yet smooth deformations; and 2) the available mecha-
nism within CPD for assigning different levels of smoothness
to data points. To the best of our knowledge, this is the first
attempt of utilizing globally smooth, nonlinear, dense spatial
transformation models in semi-supervised learning. It should
also be noted that, while the work present in this paper is
based on LapSVM, our model has a broad applicability and
can be readily extended to many other SSL solutions.

The rest of this paper is organized as follows. Section 2
introduces the background and related work of metric learning
for SSL. The CPD transformation model is described in Sec-
tion 3. Section 4 presents our CPD-LapSVM metric learning
model integrating CPD transformation into semi-supervised



classification procedure. Experimental results are presented in
Section 5 to validate our solutions with both synthetic and real
world datasets. Section 6 concludes this paper.

II. BACKGROUND AND RELATED WORK

Distance Metric Learning (DML) A metric over set
X is a mapping function D: X x X — R. The goal of
supervised metric learning is to learn a “better” metric, with
the aid of training vectors Xxi,Xs,...,Xn € AX. The Maha-
lanobis distance has become one of the most widely studied
metrics in supervised DML research [7], [8]. It is defined
as: Dm(xi,xj) = /(xi — x3)TM(x; — x;), where M is a
positive semi-definite (PSD) matrix (denoted as M > 0). Since
M can always be decomposed as M = L7 L, the Mahalanobis
distance Dy can be rewritten as:

DM(XZ‘,XJ') = \/(in — LXj)T(LXi — LXj). (1)

Eqgn. (1) indicates that the Mahalanobis metric with matrix
M is essentially the Euclidean distance after a linear transfor-
mation f : x — Lx. Learning a Mahalanobis metric therefore
is equivalent to learning a linear transformation that ensures
the resulted Euclidean distances would very well conform to
the supervisory information. This observation also applies to
nonlinear metric learning, and therefore the focus to learn a
metric can be shifted to learn a geometric mapping.

In this paper, we propose a nonlinear SSL space transfor-
mation model for LapSVM. To help readers understand our
approach, we introduce two of the related models, MSVM
and OLapSVM, as follows.

A. Related Work

MSVM  The Metric learning with SVMs (MSVM) algo-
rithm [15] is formulated under the margin-radius-ratio bounded
SVM paradigm. It simultaneously learns a SVM classifier and
a Mahalanobis metric, expressed via a linear transformation
L, through solving the following constrained problem:

min
L,w,b
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Here, R(L) is the radius of minimum enclosing ball (MEB) of
data points in the transformed space. The MEB is the smallest
ball that encloses all the data points, and its radius R(L) can
be obtained by:

R(L) =min r, st 72> |Lx;—Lxc2, Vi=1,..,n

where x. denotes the center of all the data points. It should
be noted that, setting margin-radius-ratio bounds in SVMs
is aimed to limit the transformation extension, and therefore
ensure the convergence of the optimization procedure. From
the transformation perspective, our work could be regarded as
a nonlinear extension of MSVM, with Laplacian regularization
targeting the SSL problems.

OLapSVM  OLapSVM [13] is a metric learning model
designed based on LapSVM. It aims to optimize graph

Laplacians and learns task-specific similarity metrics from the
labeled samples. With a transformation matrix L of size mxm,
where m is the dimension of the data, the edge weight between
two data samples z; and x; is defined as:

wij (L) = exp(—[1L(z; — z;)]?)

The optimal matrix L* in OLapSVM is determined through
minimizing the following objective function:

I+u
QIL)= Y wi(L)— > wi(L) =AY > wy(L)
(i,J)€F (i.j)€S i=1jeN;

where S and F are equivalence and non-equivalence con-
straints defined by labels. IV; specifies the k nearest neighbors
of x; in the Euclidean space. [ and u are the numbers of
labeled and unlabeled data, respectively, and A is a weighting
factor.

III. TRANSFORMATION REGULARIZATION AND CPD
TRANSFORMATION MODEL

In transformation based applications (e.g. point match-
ing), regularization is commonly required to ensure the well-
posedness of the problem, as well as to generate a simple and
smooth deformation field.

Let v(x) : R — R? denote a displacement function that
moves dataset x towards y. Estimation of an optimal v(-)
has been commonly formulated under Tikhonov regularization
framework,

Rlv] = Remp[ ]+ ARreg[v]
2
§j Gt o)+ Dol
where N is the number of instances in dataset. ||-|| is the norm

operator. \ is a regularization parameter that controls the trade-
off between the data term and the regularization term. D is a
linear differential operator.

The regularization functional on v is to ensure certain
extent of smoothness, which can be essentially determined
by the norm operator of the functional space. Different norm
operators would lead to different smoothness functionals. A
general norm of v in the Hilbert space H™ is given in [16]:
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Alternatively, the norm in the Reproducing Kernel Hilbert
Space (RKHS) can also be defined as:
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where K is the kernel function associated to the RKHS, and K
is the Fourier transform of K. © denotes the Fourier transform
of the function v and s is a frequency domain variable.
According to [16], the optimal solution that minimizes
Eqn. (2) is given by linear combination of particular kernel

[v][m



functions on each instance x, plus the term ¢(z) in the null
space of D:

N
z) = > iKpp(2,%:) + ¢(2) ®)
=1

where v(z) stands for the displacement of an arbitrary position
z in the same vector space. The kernel function Ky is a
Green’s function of the self-adjoint operator DD, where D is
the adjoint operator of D. ¢; (size d x 1) is the weight of the
kernel functions.

In this work, the coherent point drifting (CPD) model [14] is
chosen to transform a feature space smoothly and nonlinearly.
It was originally used as a registration solution to match point
sets. CPD model is formulated using a particular regularization
term where the kernel function K is chosen as a Gaussian low-

pass filter G in Eqn. (4):

_ [ P,
Ryeg|v] = /R . EE) d (6)

This Gaussian choice is motivated by several considerations.
First, the corresponding Green’s function (as in Eqn. (5))
of this regularization term is also a Gaussian. Second, the
Gaussian kernel is positive definite and the null space term is
0. Third, by choosing appropriately sized Gaussian functions
we have the flexibility to control the ranges of the filtered
frequencies and thus different amount of spatial smoothness
at each data point. As the null space term of the Gaussian
kernel becomes 0, the optimal solution v(-) for CPD is given
by:

N N z—x:)2
z) = %iG(z,x) Zwl (e —ll) = Y e 2t
i=1 i=1 (7)
where the Green’s kernel function becomes a Gaussian G(, -).
o is the width of the Gaussian filter, and it controls the overall
level of smoothness in the deformation field.
The matrix format of v(z) can be written as:

G(z,x1) .
v(z) =¥ = P¥G(z,x), (8)
G(z,%n)

where W (size d X n) is the weight matrix for the Gaussian
kernel functions. n is the number of instances in x.

In the original point-matching CPD algorithm, a uniform o
was used in deformation field estimation. However, different
o; can be used to specify the stiffness of the deformation field
around x;. A large o corresponds to a smoother neighborhood
and therefore a uniform deformation across a larger range. In
other words, o defines the influence power of each data point.
In this work, we take advantage of this flexibility equipped
in the CPD model, and assign different influence ranges to
labeled and unlabeled data points. More specifically, a larger
o is assigned to labeled points allowing them to exert more
significant influence in producing desired classification output.
More details will be presented later in section IV-B.

IV. CPD BASED NONLINEAR DML FRAMEWORK FOR SSL

Unlike the existing semi-supervised DML methods, which
are mostly focused on linear transformations, our proposed
method seeks a smooth global nonlinear transformation that
drives labeled and unlabeled data points together towards a
better linear separability. Our solution consists of two versions:
the linear model maximizes the linear separability under the
original input space, and the kernel version strives for the same
goal under the kernel space.

A. CPD based DML with LapSVM (CPD-LapSVM)

Laplacian SVM (LapSVM) is a popular graph-based SSL
solution. Formulated based on the standard SVM models,
LapSVM solves the classification problem by employing two
regularization terms: one for SVM maximal margin classifi-
cation, and the other for label smoothness across the graph
- neighboring nodes should have identical or similar labels.
LapSVM seeks to find the best class separation (maximal
margin) while taking account of the graph structure that
reflects the intrinsic similarities among data points.

Let X = {x;| x;, € R{i =1 .1 + u} denote the
whole training dataset. {x;,y;}!_, are labeled data with labels
yvi € {—1,+1}, and unlabeled data instances are the remaining
{xi},l;?ﬂ. LapSVM learns a classifier f(x) from the training
set X, by solving the following optimization problem [5]:

l I+u
. 1
Jmin = 72 &+ allflik +vr D> Diw(f(x;) — f(xx))°
i=1 Jok=1
s.t. yif(xi) >1—-¢&;, & >0, Vi=1...1;

&)
where D;; is the weight of the edge connecting x; and x; in
the data adjacency graph. &; is the slack variable from SVM.
Y4 and ~y; are the hyper-parameters for the regularization
terms. || f||% is the squared norm of f in Hy, the RKHS.

Formulation of our CPD-LapSVM Similarly as in SVML
[8], our framework jointly learns a spatial transformation and
a classifier at the same time. The main distinction is that the
metrics learned in our model are expressed with nonlinear
global deformations, regulated via the CPD model. For each
data point x;, let x{ be its initial coordinate. Through the
displacement v(x) in Eqn. (8), x; will be moved from x? to
x}:

xi =x0 +ox)) =x) + G(x?, x°) (10)

where x° is the initial dataset. For each test data point z,

G(z,x°) will be calculated based on Eqn. (7). The weight
matrix W captures the data abstraction from the training
samples, and needs to be estimated in the training stage.

As we take LapSVM as the host algorithm, the classifier
to be learned is a LapSVM classifier f(x;) = wlx} + b
under the CPD-transformed space. The kernelized version of
both LapSVM and our CPD-LapSVM can lead to nonlinear
decision boundaries in the input space, though they are still
hyperplanes under the kernel space. The CPD transformation
can be applied in both the input space and the kernel space.



The latter is the kernel version of our CPD-LapSVM model,
which will be presented later in section IV-C.

Under the input space, our linear version CPD-LapSVM
(note: “linear” refers to decision boundary; CPD transforma-
tion is nonlinear) is built upon the LapSVM objective function
in Eqn. (9). First, we use a quadratically smoothed hinge loss
function as the slack variable item:

& = max[0,1 — yi f(x})]”

The choice of quadratic form is motivated by the mathematical
convenience in computing the derivatives w.r.t. f(-) and W.
Second, the squared Frobenius norm of ¥, denoted as ||¥||%,
is added to impose a smoothness constraint onto the estimated
transformations. As a return, the chance of overfitting would
be reduced.

With these two added terms, our linear CPD-LapSVM
learns a nonlinear transformation and a linear classifier simul-
taneously through the minimization of the updated objective
function:

1)

min J = Zmax[o L= (x4 )7 4wl + [
l+u
+ 1 Z Djk(wa; — WTXIIC)Q
j k=1
st.yi(wix) +b) >1—max[0,1 —y;(w' x; +b)]° Vi= %1.2.). l;

where 4, 77 and vz are trade-off hyper-parameters.

Optimization strategy The objective function of CPD-
LapSVM is parameterized with a transformation matrix ¥
and classifier parameters {w,b}. To search for an optimal
solution, we adopt an EM-like iterative minimization strategy
that updates ¥ and {w,b} alternatingly. The matrix ¥ is
initialized with all O entries, so are w and b.

With ¥ fixed, Eqn. (12) reduces to the original LapSVM
objective, performing on the transformed dataset x'. It can be
easily optimized using the LapSVM solver in [5] (a standard
SVM solver with the quadratic forms). With {w, b} fixed, the
classification decision boundary becomes explicit. We can then
further update the deformation to make the transformed dataset
better conform to the membership assigned via the decision
boundary. Now the objective function is only on ¥ (note: x| is
also a function of W, as in Eqn. (10)), reformulated as follow,

l
1
mm J = 72
l4+u

+ | |F + Z Djr(w'xj —w'xy)?

Jk=1

—yi(wx; + b))
(13)

While CPD is capable of producing rather sophisticated
deformations, the smoothness term | ®||% in this objec-
tive greatly regularizes the deformations that can be gener-
ated. In this paper, we used full graphs as the adjacency
graphs, where each pair of points are connected. The edge
weight Djk between x; and xj is assigned as Dji
exp(— 2@2(\\x — x:|/?)), where « is the parameter in heat

kernel function. As the objective function Eqn. (13) is dif-
ferentiable w.r.t. ¥, a gradient based constrained optimization
solver ! is used to seek its local minima, as well as the optimal

solutions of W. The gradient g—;l], is given as follows:

l
2 N
% =—7 ;max[o, 1-— yi(waZ1 + b)]yinT(x?7x0) + 2y, ¥
l+u 1
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(14)

The above derivations are based on a particular classifier,
LapSVM. Integrating CPD with other SVM based models, e.g,
TSVM, would be rather straightforward. In general, for SSL
solutions formulated under an optimization framework, we can
commonly utilize CPD to parameterize data points at new
locations, and use the two-stage EM procedure to optimize
the transformation and the classifier in an alternating fashion.

B. SSL mechanism in CPD: assign larger influence to labeled
samples

As described in section III, by choosing an appropriately
sized Gaussian function, we have the flexibility to control the
amount of spatial smoothness around each point. In the CPD
registration algorithm [14], all points were treated equally and
assigned the same Gaussian width. Such uniform assignment,
if adopted in SSL, would fail to stress the importance of the
membership certainty residing in labeled points. To exploit
such certainty, we assign wider Gaussian widths to labeled
data to amplify their control ranges. In this way, more samples
will move coherently along with labeled samples to make the
overall data set more separable. This concept is illustrated
in Fig. 1. Black dots represent unlabeled data, and red and
blue dots are labeled instances with opposite labels. Labeled
samples have larger influence ranges (radii of the circles) than
the unlabeled.

(x,—x;)?
202 X . .
Glxi, ;) = e (xr:ﬁ Vx;,x; € unlabeled data; (15)
e i  otherwise.
Mapping

this  concept to
implementation, we
assign different os
to the Gaussian
function G(x;,x;)
in Eqn. (7). If
x; and x; are
both unlabeled
samples, G(x;,x;)
is computed with a Flg 1. Tllustration of the concept of assigr}ing

. different os to labeled and unlabeled points.
smaller  width o, Refer to text for details.

Otherwise, a wider

I The sequential quadratic programming based constrained optimizer “fmin-
con” in Matlab Optimization Toolbox is utilized.



range o; is used, as shown in Eqn. (15). In this way, the
constructed Green’s kernel matrix in Eqn. (5) would still be
maintained as symmetric.

The widths o, and o; are determined as follows. Let d;min
denote the distance from an instance x; to its nearest neighbor.
oy, is computed as the mean of all d;,;, values across the entire
training set. o; is calculated as the mean of d;n;, values for
only the labeled data. Since the labeled data are more sparsely
positioned compared with the whole training set, the width o;
is always larger than o,. In addition, o; increases along with
the decrease of the number of labeled samples.

C. Kernelization of CPD-LapSVM

The CPD-LapSVM model we introduced as far works under
the input space. Many machine learning algorithms, including
various DML solutions, can be kernelized, and the idea is to
embed the input features into a higher dimensional space, with
the hope that the transformed data would have certain desired
property under the new domain.

SVMs and LapSVMs can be naturally kernelized as their
dual formulations and solutions can both be expressed with
inner products. Our CPD-LapSVM, with ¥ as a parameter
matrix, cannot be directly kernelized the same way — computa-
tion of W requires the location information of the transformed
samples. Therefore, we adopt a kernel principal component
analysis (KPCA) based framework proposed in [17]. Given a
chosen kernel function, we first project the input samples into
a kernel feature space introduced by KPCA. We then train the
CPD-LapSVM model under the kernel space to learn both the
transformation and classifier. Proven to be equivalent to the
traditional kernel trick, this KPCA based framework requires
no derivation of any new mathematical formula. If a low-rank
KPCA is used, this approach also provides a convenient way
to accelerate a learner. For more technical details, we refer
readers to [17].

V. EXPERIMENTAL RESULTS

We performed experiments on a synthetic dataset, seven
benchmark UCI datasets, and a real world dataset for
Alzheimer’s Disease (AD) diagnosis. Comparisons are made
with state-of-the-art SSL solutions.

A. Experiments on synthetic dataset

The first set of experiments are conducted on the two-moon
synthetic dataset 2. This dataset consists of 200 examples,
equally divided into two classes (see Fig. 2). 10% of each
class are chosen randomly as labeled samples in the following
experiments. Both linear and kernel versions of our CPD-
LapSVM were tested.

Results from linear version CPD-LapSVM This exper-
iment is designed to show the ability of CPD-LapSVM in
transforming data points for better separability under the input
space. The effectiveness of assigning larger weights to labeled
data for SSL is also demonstrated. Comparison is made with
LapSVM, the host algorithm, to show the improvements.

Zhttp://manifold.cs.uchicago.edu/manifold_regularization/data.html
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Fig. 2. First column: classification results of linear LapSVM (a), CPD-

LapSVM with equal smoothness range (b), and CPD-LapSVM with larger
smoothness range for labeled samples (c), respectively. Second colume (d) -
(f): initial deformation field, deformation field of (b) and deformation field of
(c).

Fig. 2 (a) and 2 (c) show the classification results of
LapSVM and CPD-LapSVM, respectively. As a comparison,
we also show in 2 (b) the result of a modified version of
CPD-LapSVM, where equal Gaussian weights are assigned
to both labeled and unlabeled samples. It is evident that,
linear LapSVM cannot handle the non-separability in the
data, while our CPD-LapSVM achieves a 100% accuracy
by making the data points linearly separable through space
transformation. Assigning equal width (Fig. 2.(b)) can also
deform the space, but it does not work as effectively as CPD-
LapSVM (Fig. 2.(c)). The corresponding deformation fields
of Fig. 2 (b) and 2 (c) are shown in Fig. 2 (e) and 2 (f).
From the comparison of the two fields, one can tell that the
field of CPD-LapSVM appears smoother, labeled points are
more linearly separated and the unlabeled points follow more
closely with labeled samples. This can serve as a supporting
evidence that assigning larger Gaussian width to the labeled
points indeed allows them to exert amplified influences of their
label certainty.

Results from kernel version CPD-LapSVM In this ex-
periment, the two-moon dataset is used to simulate linearly



inseparable cases in the feature spaces induced by RBF
kernels. Fig. 3 (a), 3 (b) and 3 (c) show the best classification
results of LapSVM using RBF kernels with different widths.
When an optimal or appropriate kernel width is in place, as in
Fig. 3 (a), LapSVM can have the two classes well separated.
However, it performs poorly when sub-optimal widths are
used, as in 3 (b) and 3 (c). Finding an optimal width
through cross-validation often entails a large number of width
candidates and therefore many iterations. Our kernel CPD-
LapSVM can greatly ease this procedure — deforming the
kernel space through CPD provides a supplementary force
to the RBF kernel in making the data points more linearly
separable, just as it does under the input space. The effects
are demonstrated in Fig. 3 (e) and 3 (f): CPD-LapSVM
uses the same RBF kernels as in Fig. 3 (b) and 3 (c),
but managed to obtain better classification accuracies. Due to
the difficulty of visualization in high-dimensional space, the
decision boundaries, which are hyperplanes under the kernel
spaces, are shown under the original input space.
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Fig. 3. First column: classification results of kernel LapSVM with RBF
kernels width = 1, 8 and 32. Second column: results of kernel version CPD-

LapSVM with RBF kernels width = 1, 8 and 32.

B. Experiments on UCI datasets

TABLE I
SEVEN UCI BENCHMARK DATASETS USED IN
EXPERIMENTS. COLUMNS SHOW THE NAME,
NUMBERS OF SAMPLES, ATTRIBUTES AND
CLASSES OF EACH DATASET.

In this section,
we employ
the UCI machine
learning repository

Datasets # Samples  # Attributes # Classes

datasets to Balloons 76 4 2

evaluate our Haberman 306 3 2

Liver 345 6 2

CPD LapSVM for Breast-cancer 286 9 2

sem1-superv1sed Heart-statlog 270 13 2

: : Diabetes 768 8 2

class1ﬁcat1on. — S8 o 5
Experiments  are
conducted to

explore: 1) performance of CPD-LapSVM on datasets with a
small number of labeled samples; and 2) the impact of the
number of labeled samples on the classification accuracy.
Seven UCI benchmark datasets were used in this study, and
their basic info is summarized in Table 1. All datasets have
been preprocessed through normalization.

Three semi-supervised methods, Laplacian regularized least
squares (LapRLS), Laplacian SVM (LapSVM) and OLapSVM
[13], are utilized in all experiments as the competing solutions.
These methods are tested with both linear and RBF kernels.
Many SSL DML solutions have been proposed in recent years,
under both SVM and k-NN paradigms. OLapSVM [13] is
chosen as a comparison due to its close relevance to our
solution, as it 1) also uses LapSVM as the host algorithm;
2) learns metrics to change the graph edge weights; and 3)
has both linear and kernel versions.

Semi-supervised classification UCI datasets are all labeled.
To simulate the SSL data scenario, 30% of the training data are
randomly selected as labeled samples and the rest are treated
as unlabeled. To better compare the classification performance,
we run the experiment 50 times with different random 4-fold
splits of each dataset, three for training and one for testing.
The hyper-parameters y4, v and vy, are determined through
cross-validation (CV) from {27° ~ 2%}, ~, and ~; are the
slackness tradeoff and graph regularization parameter used in
all comparison models. vy, is the CPD regularization parameter
used only in CPD-LapSVM. All the kernel methods have an
additional parameter to tune: the RBF kernel width o, which is
also chosen through CV from {275 ~ 219} in the experiments.
The mean and standard deviation of each competing algorithm
are calculated over the 50 runs and summarized in Table II.

To better evaluate the relative performance of each al-
gorithm, a pairwise Student’s ¢-test with a p-value 0.05 is
conducted among the tested methods for each dataset. Then, a
schema from [18] is applied to rank the tested algorithms. Each
solution is compared with all competing methods: scores 1 if it
is significantly better than one opponent in statistic; 0.5 points
if there is a tie (no significant difference), and 0 if it performs
worse. Table II summarizes the classification accuracies and
comparison scores. Highest accuracy for each dataset has been
identified in Boldface. It is evident that our CPD-LapSVM
outperforms all other methods with significant margins in
statistic. It achieves the highest ranking score in both linear
and kernel groups. It is noteworthy that the linear CPD-
LapSVM obtains comparable results (score 38.5) with the



~-r1-CPD-LapSVM|

—%-r-OLapsvM

r-LapSVM

3
T

4| ¢ r-LapRLS

-~ I-CPD-LapSVM

Accuracy (%)

2,8
:

=" 7| -©- I-oLapsvm

I-LapSVM

-©- I-LapRLS

4‘0 . 5‘0 6‘0 7‘0 B‘D 9‘0 100
Ratio of Labeled Samples (%)

(a) Liver

_ @) - 1-CPD-LapsVM|

—¥-r-OLapSVM
r-LapSVM

7| r-LaprLs

- -} -©- I-cPD-LapsvM

Accuracy (%)

-©-1-OLapSVM
I-LapSVM

-©- I-LapRLS

S T e e
Ratio of Labeled Samples (%)

(b) Breast-cancer
Fig. 4. Classification accuracies of tested methods w.r.t. different prevalence

levels of labeled data. The prefix [ denotes linear methods and r denotes
kernel methods using RBF kernels.

other competing methods using RBF kernels. Furthermore, our
proposed CPD-LapSVM achieves significantly improvements
over the host method LapSVM.

Impact of prevalence of labeled samples We also explore
the impact of varying prevalence levels of labeled samples on
the performance of the tested algorithms. In this experiment,
we used UCI liver and breast-cancer datasets as examples.
The percentages of labeled data in training sets are set to
an ascending sequence {20%, 40%, 60%, 80% , 100%}.
The same experimental setting and hyper parameters selection
procedure are adopted from the previous experiments. The
classification results are shown in Fig. 4. Solid lines in both
subfigures depict the results from kernel versions, while dash
lines are for linear models. It is evident that CPD-LapSVM
models consistently outperforms the other competing methods.
Kernel CPD-LapSVM, the solid red lines in both subfig-
ures, achieves the highest classification accuracies among all
solutions throughout all different label prevalence levels. In
addition, linear CPD-LapSVM, dash read lines, often produces
comparable performance with other competing methods using
RBF kernels.

C. Applications in Alzheimer’s Disease diagnoses

In this section,
our proposed CPD-
LapSVM is applied
to solve a real world
problem in medicine
— identify potential ‘
Alzheimer’s Disease (a) (b)

(AD) patients based Fig. 5. (a): brain MRI of an ADNI subject. (b):

on neuroimage data anatomical segmentation of (a). Colors indicate
K * different brain structures.

AD is the most

common form of dementia, affecting more than 44 million
people worldwide. Mild cognitive impairment (MCI) is often
considered as the early stage of AD. While approximately
5% — 10% MCI patients will develop into AD each year, the
others remain in this stage and never convert. Clinically, the
former is called progressive MCI (pMCI) if the conversion
happens within 3 years after baseline diagnosis, and the
latter is called stable MCI (sMCI). Differentiating pMCI
from sMCI at the baseline time, if with high accuracy, can
potentially lead to early diagnosis of AD, which is of great
importance to initiate treatments early, as well as understand
the disease mechanism. As MCI-to-AD conversion takes 3
years to detect, and many patients do not have follow-up
diagnosis, a large number of MCI subjects are labeled as
“Unknown MCI” (uMCI). With such unlabeled data, SSL
would be suitable to produce better predictions.

Data and setup The data used in this experiment are ob-
tained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database 3. Overall, 110 patients labeled as pMCI, 38
with sMCI and 94 with uMCI (242 subjects in total) are used
in our experiments.

The features utilized in this study are the volumes of
113 cortical and subcortical brain structures extracted from
the subjects’ Magnetic Resonance Imaging (MRI) scans. The
anatomical structures include left/right hippocampi, left/right
caudates, etc, as shown in Fig. 5. All features have been
normalized by the corresponding whole brain volumes. The
same experimental setting and hyper parameters selection
approach in the previous experiments are adopted here. The
uMCI patients are shared as unlabeled samples over the 4-fold
cross validation.

Experimental results and comparisons The classification
accuracies are reported in Table III . Compared to the host
LapSVM algorithm, the classification accuracies is improved
in both linear and kernel versions of CPD-LapSVM. The
highest accuracy, 78.27%, is produced by the kernel CPD-
LapSVM. We also summarize several state-of-the-art works in
MCI-to-AD prediction in Table IV. They are all SSL solutions,
utilizing MRI datasets under ADNI. “Moradi et al. (i)” on row
4 is the solution proposed in [19] with age related effect, and
“Moradi et al. (i1)” is the solution with age effect removed. The
accuracy obtained through our CPD-LapSVM kernel version
is at least 3.5% higher than all other solutions. While direct
comparisons of the methods are not feasible, as different
subjects, features and classifiers were used, the high accuracies
from our model nevertheless can be regarded as an indirect
evidence for the power of the proposed framework.

VI. CONCLUSIONS

The proposed CPD-LapSVM model learns a globally
smooth nonlinear transformation to improve the performance
of LapSVM classifier. CPD is used as the transformation
model in part because of its inherent mechanism to assign
data samples with different influence ranges. Our framework

3www.loni.usc.edu/ADNI



TABLE 11

MEAN AND STANDARD DEVIATION OF CLASSIFICATION ACCURACIES OF EACH TESTED METHOD ON SEVEN BENCHMARK UCI DATASETS. THE PREFIX [
DENOTES THE LINEAR VERSION AND 7 DENOTES KERNEL VERSION. BOLDFACE INDICATES THE HIGHEST CLASSIFICATION ACCURACY FOR EACH
DATASET. THE LOWER NUMBER IN THE PARENTHESIS DENOTES THE RANKING SCORE OF EACH METHOD ON THE GIVEN DATASET.

Algorithms Balloons Haberman Liver g reast Heart Diabetes Sonar Total
ancer Statlog Score
I-LapRLS 82.67 £ 5.62 53.56 + 7.05 62.10 £+ 4.03 67.18 £ 3.79 78.87 £3.14 74.08 £ 2.79 69.01 £ 3.66
(2.5) (0.5) (1.0) (1.5) (2.0) (2.5) (1.0) 11
I-LapSVM 83.33 £5.21 56.57 £ 5.52 63.00 £ 3.64 68.53 £ 4.21 79.96 £ 2.85 74.19 £ 2.39 70.00 £ 3.48
(2.5) (1.5) (1.5) (2.5) (2.5) (2.5) (1.5) 14.5
1-OLapSVM 88.67 +4.98 65.15 £ 6.53 64.81 £ 3.07 69.15 £ 4.21 81.33 £2.59 74.97 £ 2.56 71.14 + 3.34
(7.0) (3.5) (3.5) (3.5) (6.0) (3.5) (2.5) 29.5
I-CPD-LapSVM 86.67 £+ 7.56 64.19 £ 6.31 67.81 £ 3.56 70.68 £3.70 | 82.78 +£2.68 | 76.39 £3.45 72.07 £ 3.18
(5.5) (3.5) (6.0) 4.0) 9.0) (7.0) (3.5) 38.5
r-LapRLS 84.00 £+ 6.05 71.21 £5.17 69.29 £ 3.37 72.76 £ 4.67 79.06 £ 3.92 76.78 £ 2.39 75.86 £ 3.62
(3.0) (7.5) (8.0) (7.0) (2.5) (8.0) (7.5) 435
r-LapSVM 87.33 £6.81 70.45 £5.43 67.71 £ 3.49 72.57 £ 3.29 80.33 £ 3.10 75.31 £ 2.03 75.59 £ 3.24
(7.0) (7.0) (6.0) 6.5) 4.5) (5.0) (7.0) 43
7-OLapSVM 89.33 £4.92 70.76 £ 5.33 68.10 £ 3.69 74.03 £ 3.13 81.41 £3.24 75.49 £ 2.37 75.80 £ 3.04
(1.5) (7.0 (6.5) (7.5) (6.0) (5.0) (7.5) 47
7-CPD-LapSVM 89.67 +6.44 | 72.32+4.66 | 69.95+2.27 | 75.63 + 3.51 81.50 £+ 3.09 76.95+3.12 | 76.71 + 3.05
(7.5) (7.5) (8.5) 9.0) (6.0) (8.0) (7.5) 53.5
TABLE III [6] J. Weston, F. Ratle, H. Mobahi, and R. Collobert, “Deep learning

MEAN AND STANDARD DEVIATION OF CLASSIFICATION ACCURACIES OF

EACH TESTED METHOD ON ADNI MCI DATASET.

Algorithms Linear Kernel RBF Kernel
LapRLS 67.09 + 1.69 76.09 £+ 3.29
LapSVM 66.37 + 1.37 76.14 £+ 3.87

OLapSVM 67.40 +2.20 76.54 + 3.78

CPD-LapSVM  69.12+1.19 78.27 +2.82

TABLE IV

COMPARISONS OF CPD-LAPSVM WITH OTHER STATE-OF-THE-ART SSL

SOLUTIONS FOR MCI-TO-AD PREDICTIONS USING ADNI.

Methods ACC(%) SEN(%) SPE(%)
Ye et al.[20] 56.10 94.10 40.80
Filipovych et al.[21] —— 79.40 51.70
Moradi et al.[19](i) 72.60 84.16 53.66
Moradi et al.[19](ii) 74.74 88.85 51.46
CPD-LapSVM (RBF) 78.27 86.38 52.32

has broad applicability, and it can be integrated with other
SSL classifiers than LapSVM. Evaluations on UCI and ADNI
datasets demonstrate the efficacy of our model in solving real
world problems. Exploring other types of geometric models is
the direction of our future efforts. Also, we are interested in
applying the proposed framework to other machine learning
problems.
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