Sequential Circuits

- This section discusses two sequential circuit components that form the basis for a computer:
 - Registers (temporary storage)
 - Memory (storage of data & instructions)

These memory components are the basic information storage elements of a computer!!
Combinational & Sequential
Microcontroller Example

Sequential Circuits
Register Functions

Register:
A physical location in a processor that can contain a binary number. This location is used to store information temporarily.
The register size is expressed in bits.

Functions:
• Write data to the register/Parallel Load,
• Hold data (no change),
• Shift contents (logical, arithmetic, rotate),
• Clear contents.
Note: One can clearly see the basic ingredients of a sequential circuit: the combinational logic and the memory element.
Registers

Tri-State Buffer

\[A = 1 \quad \text{I} \quad A = 0 \]

\[A \quad = \quad \text{I} \quad \text{I} \quad \text{I} \quad \text{O} \quad \text{O} = \text{I} \quad \text{O} \quad \text{O} \]

High-Impedance

Bus line

Registers

Parallel Load: 4-Bit Register, 2-Busses

Often referred to as a Register with:

1 write port
1 read port
 Registers
 Parallel Load: 1-Bit Register, 1-Bus

 Or
 Parallel Load: 1-Bit Register, 1-Bus
Registers

Parallel Load: 1-Bit Register, 1-Bus

Read/write port

R1

Parts of the microcomputer where information is stored

Memory

Primary

Main memory

Cache

Secondary

Hard drive (UDMA/SCSI/etc.)

Floppy/ZIP/LS120 etc. disks

CD-ROM / DVD / Tape Drive etc.

RAM / SRAM / DRAM

ROM / PROM / EPROM / EEPROM
Semiconductor Memory Devices

Types

<table>
<thead>
<tr>
<th>Memory Type</th>
<th>Category</th>
<th>Erasure</th>
<th>Write mechanism</th>
<th>Refresh mechanism</th>
<th>Volatility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random-Access Memory (RAM)</td>
<td>Read-write Memory</td>
<td>Electrically, Byte level</td>
<td>Electrically</td>
<td>Depends</td>
<td>Volatile</td>
</tr>
<tr>
<td>Static RAM (SRAM)</td>
<td></td>
<td></td>
<td></td>
<td>Not necessary</td>
<td></td>
</tr>
<tr>
<td>Dynamic RAM (DRAM)</td>
<td></td>
<td></td>
<td></td>
<td>Necessary</td>
<td></td>
</tr>
<tr>
<td>Read-only Memory (ROM)</td>
<td>Read-only Memory</td>
<td>Not Possible</td>
<td></td>
<td>Masks</td>
<td></td>
</tr>
<tr>
<td>Programmable ROM (PROM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erasable PROM (EPROM)</td>
<td></td>
<td>UV Light, Chip level</td>
<td>Electrically</td>
<td>Not applicable</td>
<td>Non-volatile</td>
</tr>
<tr>
<td>Flash memory</td>
<td></td>
<td>Electrically, Block level</td>
<td>Electrically</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrically EPROM (EEPROM)</td>
<td></td>
<td>Electrically, Byte level</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Random Access Memory

(read/write volatile memory)

- **Dynamic RAM**
 - Stores each bit as a charge on a capacitor
 - Smaller and cheaper, but requires periodic refreshing of capacitors

- **Static RAM**
 - Stores each bit in a flip-flop (like the registers)
 - Larger and faster, does not require periodic refreshing
RAM

Memory Cell: That’s where a bit of information is stored

(m+n) total address bits

Row Address

Row Decoder

2^{m-1} 2^m

2^m

n

Column Address

Column Multiplexer

A_2 A_1 A_0

3-to-8 Decoder

A_5 A_4 A_3

3-to-8 multiplexer

Note: 2^6 = 64

Example: 64x1

RAM
Static RAM
Memory Cell

As long as the chip is powered, memory remains!

Dynamic RAM
Memory Cell

The capacitor requires a regular refreshing cycle b/c it will slowly discharge!